Suppr超能文献

使用不同刺激模式的 fMRI 会话进行语义解码:一项实用的 MVPA 研究。

Decoding semantics across fMRI sessions with different stimulus modalities: a practical MVPA study.

机构信息

Akama Laboratory, Graduate School of Decision Science and Technology, Tokyo Institute of Technology Tokyo, Japan.

出版信息

Front Neuroinform. 2012 Aug 24;6:24. doi: 10.3389/fninf.2012.00024. eCollection 2012.

Abstract

Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.

摘要

无论是具象的还是象征的概念组织理论都可以预测,在不同刺激模式下激活的概念的神经激活中,会存在部分共享和部分分化。但是,BOLD 活动模式中的跨参与者和跨会话可变性使得使用 MVPA 方法分析这种模式具有挑战性。在这里,我们研究了跨模态和个体变异性对 fMRI 数据的机器学习分析的影响,这些数据是在单词属性生成任务期间记录的。我们向一组日本参与者展示了相同的一组有生命和无生命的概念(陆地哺乳动物或工作工具),在两个会话中进行:第一个会话使用口语单词的听觉呈现;第二个会话使用用日语字符书写的单词的视觉呈现。分类准确率证实,可以在单次试验中检测到这些语义类别,会话内的预测准确率为 80-90%。但是,跨会话预测(从听觉任务数据中学习以分类书面单词任务的数据,反之亦然)受到了性能惩罚,达到了 65-75%(仍然在 p«0.05 时具有个体意义)。我们进行了几项后续分析来研究这种缺陷的原因,得出的结论是,无论是时间还是空间的分布差异都不能单独解释它。相反,需要识别活动的时空综合模式,以实现成功的跨会话学习,这表明特征选择策略可以进行修改以利用这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6d5/3426793/c57c91d5379d/fninf-06-00024-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验