Mohanty Vaibhav, Shakhnovich Eugene I
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115 and Massachusetts Institute of Technology, Cambridge, MA 02139.
bioRxiv. 2025 Jul 25:2025.03.30.646233. doi: 10.1101/2025.03.30.646233.
Evolutionary adaptation is often visualized as a population's stochastic climb toward the top of a fitness landscape. While there exist approaches to design or synthetically evolve proteins into desired structures, there is a lack of methodology for designing, tuning, and quantitatively reshaping the fitness landscapes themselves on which protein evolution takes place. Here, we introduce foundational principles of fitness landscape design (FLD) to customize the structural peaks and valleys of biophysical fitness landscapes with quantitative accuracy, offering robust control of long-term evolutionary outcomes. Our FLD algorithms use stochastic optimization of a chemically derived biophysical fitness model to consistently discover optimal antibody ensembles which force a target protein to evolve according to a user-specified target fitness landscape. We then apply FLD to suppress the fitnesses of two SARS-CoV-2 genotype neutral networks and to discover proactive vaccines that preemptively restrict escape variant fitness trajectories before they arise.
进化适应通常被视为一个种群朝着适应度景观的顶部进行随机攀升。虽然存在将蛋白质设计或合成进化为所需结构的方法,但缺乏用于设计、调整和定量重塑蛋白质进化所发生的适应度景观本身的方法。在这里,我们介绍适应度景观设计(FLD)的基本原理,以定量精确地定制生物物理适应度景观的结构峰谷,从而对长期进化结果进行稳健控制。我们的FLD算法使用化学衍生的生物物理适应度模型的随机优化,以持续发现最佳抗体组合,从而迫使目标蛋白质根据用户指定的目标适应度景观进行进化。然后,我们应用FLD来抑制两种SARS-CoV-2基因型中性网络的适应度,并发现能在逃逸变体适应度轨迹出现之前就抢先限制其出现的预防性疫苗。