Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
Curr Biol. 2024 Oct 7;34(19):4476-4494.e11. doi: 10.1016/j.cub.2024.08.026. Epub 2024 Sep 13.
Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria. During bidirectional transport, late endosomes do not switch between opposing Rab7 GTPase effectors, RILP and FYCO1, or their associated dynein and KIF5B motor proteins, respectively. In the endogenous setting, far fewer motors associate with endosomal membranes relative to effectors, implying coordination of transport with other aspects of endosome physiology through GTPase-regulated mechanisms. We find that directionality of transport is provided in part by various microtubule-associated proteins (MAPs), including MID1, EB1, and CEP169, which recruit Lis1-activated dynein motors to microtubule plus ends for transport of early and late endosomal populations. At these microtubule plus ends, activated dynein motors encounter the dynactin subunit p150 and become competent for endosomal capture and minus-end movement in collaboration with membrane-associated Rab7-RILP. We show that endosomes surf over the ER through the crowded cell and move bidirectionally under the control of MAPs for motor activation and through motor replacement and capture by endosomal anchors.
驱动蛋白和动力蛋白-动力素复合物沿微管双向移动内体和其他小泡,该过程主要在体外条件下进行研究。在这里,我们提供了一个生理双向运输模型,其中跟踪的是内源性标记的与运输相关的蛋白,这些蛋白在拥挤的细胞环境中移动。晚期内体(LEs)在富含突起蛋白的内质网(ER)膜接触位点上双向冲浪,同时在微管上跳跃和滑行,并绕过细胞障碍物,如线粒体。在双向运输过程中,晚期内体不会在相反的 Rab7 GTPase 效应物 RILP 和 FYCO1 之间切换,也不会分别与其相关的动力蛋白和 KIF5B 运动蛋白切换。在天然状态下,与效应物相比,相对较少的分子马达与内体膜结合,这意味着通过 GTPase 调节机制,将运输与内体生理学的其他方面协调起来。我们发现,运输的方向性部分由各种微管相关蛋白(MAPs)提供,包括 MID1、EB1 和 CEP169,它们将 Lis1 激活的动力蛋白招募到微管的正端,以运输早期和晚期内体群体。在这些微管的正端,激活的动力蛋白与动力素亚基 p150 相遇,并与膜结合的 Rab7-RILP 合作,成为内体捕获和负端运动的有能力的动力蛋白。我们表明,内体通过拥挤的细胞在 ER 上冲浪,并在 MAP 控制下双向移动,从而激活分子马达,并通过内体锚定物的分子马达替换和捕获来移动。