Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Nat Struct Mol Biol. 2012 Jan 8;19(2):193-200. doi: 10.1038/nsmb.2205.
Processivity, the ability of single molecules to move continuously along a track, is a fundamental requirement of cargo-transporting molecular motors. Here, we investigate how cytoplasmic dynein, a homodimeric, microtubule-based motor, achieves processive motion. To do this, we developed a versatile method for assembling Saccharomyces cerevisiae dynein heterodimers, using complementary DNA oligonucleotides covalently linked to dynein monomers labeled with different organic fluorophores. Using two-color, single-molecule microscopy and high-precision, two-dimensional tracking, we find that dynein has a highly variable stepping pattern that is distinct from all other processive cytoskeletal motors, which use 'hand-over-hand' mechanisms. Uniquely, dynein stepping is stochastic when its two motor domains are close together. However, coordination emerges as the distance between motor domains increases, implying that a tension-based mechanism governs these steps. This plasticity may allow tuning of dynein for its diverse cellular functions.
成续性,即单个分子沿着轨道连续运动的能力,是货物运输分子马达的基本要求。在这里,我们研究了细胞质动力蛋白如何实现成续性运动,细胞质动力蛋白是一种同源二聚体,基于微管的马达。为此,我们开发了一种用于组装酿酒酵母动力蛋白异二聚体的多功能方法,使用与用不同有机荧光团标记的动力蛋白单体共价连接的互补 DNA 寡核苷酸。使用双色单分子显微镜和高精度二维跟踪,我们发现动力蛋白具有高度可变的步进模式,与所有其他使用“手拉手”机制的成续性细胞骨架马达不同。独特的是,当两个马达域靠近时,动力蛋白的步进是随机的。然而,随着马达域之间的距离增加,协调性出现了,这意味着一种基于张力的机制控制着这些步骤。这种可塑性可能允许为动力蛋白的各种细胞功能进行调整。