Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA.
J Cell Biol. 2011 Oct 17;195(2):193-201. doi: 10.1083/jcb.201104076.
The specific physiological roles of dynein regulatory factors remain poorly understood as a result of their functional complexity and the interdependence of dynein and kinesin motor activities. We used a novel approach to overcome these challenges, combining acute in vivo inhibition with automated high temporal and spatial resolution particle tracking. Acute dynein inhibition in nonneuronal cells caused an immediate dispersal of diverse forms of cargo, resulting from a sharp decrease in microtubule minus-end run length followed by a gradual decrease in plus-end runs. Acute LIS1 inhibition or LIS1 RNA interference had little effect on lysosomes/late endosomes but severely inhibited axonal transport of large, but not small, vesicular structures. Our acute inhibition results argue against direct mechanical activation of opposite-directed motors and offer a novel approach of potential broad utility in the study of motor protein function in vivo. Our data also reveal a specific but cell type-restricted role for LIS1 in large vesicular transport and provide the first quantitative support for a general role for LIS1 in high-load dynein functions.
由于其功能复杂性以及动力蛋白和驱动蛋白运动活动的相互依赖性,动力蛋白调节因子的具体生理作用仍未被充分了解。我们采用了一种新方法来克服这些挑战,将急性体内抑制与自动化高时空分辨率颗粒跟踪相结合。在非神经元细胞中急性抑制动力蛋白会导致各种形式的货物立即分散,这是由于微管负端运行长度急剧下降,随后正端运行逐渐减少所致。急性 LIS1 抑制或 LIS1 RNA 干扰对溶酶体/晚期内体几乎没有影响,但严重抑制了大囊泡结构的轴突运输,而小囊泡结构不受影响。我们的急性抑制结果表明,对相反方向的马达没有直接的机械激活作用,并提供了一种在体内研究马达蛋白功能的潜在广泛应用的新方法。我们的数据还揭示了 LIS1 在大囊泡运输中具有特定但细胞类型受限的作用,并首次为 LIS1 在高负荷动力蛋白功能中的普遍作用提供了定量支持。