Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Int J Nanomedicine. 2012;7:4613-23. doi: 10.2147/IJN.S28294. Epub 2012 Aug 22.
Tracking cells after therapeutic transplantation is imperative for evaluation of implanted cell fate and function. In this study, ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) were surface functionalized with water-soluble chitosan, a cationic polysaccharide that mediates enhanced endocytic uptake, endosomal escape into the cytosol, and subsequent long-term retention of nanoparticles. NP surface and chitosan were independently fluorescently labeled. Our NPs enable NP trafficking studies and determination of fate beyond uptake by fluorescence microscopy as well as tracking of labeled cells as localized regions of hypointensity in T(2)*-weighted magnetic resonance imaging (MRI) images. Adult rat neural stem cells (NSCs) were labeled with NPs, and assessment of NSC proliferation rates and differentiation potential revealed no significant differences between labeled and unlabeled NSCs. Significantly enhanced uptake of chitosan NPs in comparison to native NPs was confirmed by transmission electron microscopy, nuclear magnetic resonance (NMR) spectroscopy and in vitro cellular MRI at 11.7 Tesla. While only negligible fractions of native NPs enter cells, chitosan NPs appear within membranous vesicles within 2 hours of exposure. Additionally, chitosan-functionalized NPs escaped from membrane-bound vesicles within days, circumventing NP endo-lysosomal trafficking and exocytosis and hence enabling long-term tracking of labeled cells. Finally, our labeling strategy does not contain any NSC-specific reagents. To demonstrate general applicability across a variety of primary and immortalized cell types, embryonic mouse NSCs, mouse embryonic stem cells, HEK 293 kidney cells, and HeLa cervical cancer cells were additionally exposed to chitosan-USPIO NPs and exhibited similarly efficient loading as verified by NMR relaxometry. Our efficient and versatile labeling technology can support cell tracking with close to single cell resolution by MRI in vitro, for example, in complex tissue models not optically accessible by confocal or multi-photon fluorescence microscopy, and potentially in vivo, for example, in animal models of human disease or injury.
追踪治疗性移植后细胞的命运对于评估植入细胞的命运和功能至关重要。在这项研究中,超小超顺磁性氧化铁纳米粒子(USPIO NPs)被水溶性壳聚糖表面功能化,壳聚糖是一种阳离子多糖,介导增强的内吞作用、内体逃逸到细胞质中,以及随后纳米粒子的长期保留。NP 表面和壳聚糖被独立地荧光标记。我们的 NPs 能够通过荧光显微镜进行 NP 转运研究和确定摄取之外的命运,以及通过 T(2)*加权磁共振成像(MRI)图像中的低信号区域来跟踪标记的细胞。成年大鼠神经干细胞(NSCs)用 NPs 标记,并评估 NSC 的增殖率和分化潜能,结果显示标记和未标记的 NSCs 之间没有显著差异。通过透射电子显微镜、核磁共振(NMR)光谱和 11.7 特斯拉体外细胞 MRI 证实,壳聚糖 NPs 的摄取明显增强与天然 NPs 相比。虽然天然 NPs 的进入细胞的分数可以忽略不计,但壳聚糖 NPs 在暴露 2 小时内出现在膜囊泡内。此外,壳聚糖功能化的 NPs 在数天内从膜结合囊泡中逃逸,绕过 NP 内体溶酶体运输和胞吐作用,从而能够长期跟踪标记的细胞。最后,我们的标记策略不包含任何 NSC 特异性试剂。为了证明其在各种原代和永生化细胞类型中的普遍适用性,还将胚胎小鼠 NSCs、小鼠胚胎干细胞、HEK 293 肾细胞和 HeLa 宫颈癌细胞暴露于壳聚糖-USPIO NPs 下,并且通过 NMR 弛豫测量证实了类似的高效负载。我们的高效且多功能的标记技术可以通过 MRI 在体外进行接近单细胞分辨率的细胞跟踪,例如,在复杂的组织模型中,这些模型无法通过共聚焦或多光子荧光显微镜进行光学访问,并且可能在体内,例如,在人类疾病或损伤的动物模型中。
Bioconjug Chem. 2017-2-15
Stem Cells Transl Med. 2013-9-6
Pharmaceutics. 2021-10-14
Nanomaterials (Basel). 2020-9-11
Chin Med J (Engl). 2018-3-20
J Nanomed Nanotechnol. 2016-4
J Am Chem Soc. 2008-3-5
Nano Lett. 2007-10
Nano Lett. 2007-9
Proc Natl Acad Sci U S A. 2006-2-7
Trends Cell Biol. 1991-10