Li Hong Zhi, Hu Li Hong, Tao Wei, Gao Ting, Li Hui, Lu Ying Hua, Su Zhong Min
School of Computer Science and Information Technology, Northeast Normal University, Changchun 130017, China.
School of Life Sciences, Northeast Normal University, Changchun 130024, China.
Int J Mol Sci. 2012;13(7):8051-8070. doi: 10.3390/ijms13078051. Epub 2012 Jun 28.
A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.
提出了一种密度泛函理论(DFT)-自组织特征映射-径向基函数神经网络(DFT-SOFM-RBFNN)方法,通过结合密度泛函理论(DFT)与人工智能/机器学习方法(包括自组织特征映射神经网络(SOFMNN)和径向基函数神经网络(RBFNN))来提高DFT对Y-NO(Y = C、N、O、S)均裂键解离能(BDE)计算的准确性。实施了一个描述符优化步骤,包括SOFMNN聚类分析和相关性分析。SOFMNN聚类分析用于对描述符进行分类,并通过相关性分析根据它们与实验值的接近程度选择组中的代表性描述符作为神经网络输入。通过这个新引入的步骤可以避免冗余描述符和描述符的直观偏差选择。使用所选描述符进行RBFNN计算,对于DFT-B3LYP计算的所有92个有机Y-NO均裂BDE,均达到了化学精度(≤1 kcal·mol⁻¹),并且B3LYP/6-31G(d)和B3LYP/STO-3G方法的平均绝对偏差(MAD)分别从4.45和10.53 kcal·mol⁻¹降低到了0.15和0.18 kcal·mol⁻¹。最小基组STO-3G的改进结果达到了与6-31G(d)相同的精度,因此建议使用最小基组的B3LYP计算以最小化计算成本并将应用扩展到大分子系统。对六个分子(两个含Si-NO键和两个含氟)进行了进一步的外推测试,测试精度在1 kcal·mol⁻¹以内。本研究表明,DFT-SOFM-RBFNN是一种用于Y-NO均裂BDE的高效且高精度的方法。该方法可作为设计新型NO载体分子的工具。