Suppr超能文献

急诊科肺损伤预测评分:高危患者预防的第一步。

Lung injury prediction score for the emergency department: first step towards prevention in patients at risk.

作者信息

Elie-Turenne Marie-Carmelle, Hou Peter C, Mitani Aya, Barry Jonathan M, Kao Erica Y, Cohen Jason E, Frendl Gyorgy, Gajic Ognjen, Gentile Nina T

机构信息

Department of Emergency Medicine, University of Florida College of Medicine, PO Box 100186, 1329 SW 16th Street, Gainesville, FL 32610, USA.

出版信息

Int J Emerg Med. 2012 Sep 3;5(1):33. doi: 10.1186/1865-1380-5-33.

Abstract

BACKGROUND

Early identification of patients at risk of developing acute lung injury (ALI) is critical for potential preventive strategies. We aimed to derive and validate an acute lung injury prediction score (EDLIPS) in a multicenter sample of emergency department (ED) patients.

METHODS

We performed a subgroup analysis of 4,361 ED patients enrolled in the previously reported multicenter observational study. ED risk factors and conditions associated with subsequent ALI development were identified and included in the EDLIPS model. Scores were derived and validated using logistic regression analyses. The model was assessed with the area under the receiver-operating curve (AUC) and compared to the original LIPS model (derived from a population of elective high-risk surgical and ED patients) and the Acute Physiology and Chronic Health Evaluation (APACHE II) score.

RESULTS

The incidence of ALI was 7.0% (303/4361). EDLIPS discriminated patients who developed ALI from those who did not with an AUC of 0.78 (95% CI 0.75, 0.82), better than the APACHE II AUC 0.70 (p ≤ 0.001) and similar to the original LIPS score AUC 0.80 (p = 0.07). At an EDLIPS cutoff of 5 (range -0.5, 15) positive and negative likelihood ratios (95% CI) for ALI development were 2.74 (2.43, 3.07) and 0.39 (0.30, 0.49), respectively, with a sensitivity 0.72(0.64, 0.78), specificity 0.74 (0.72, 0.76), and positive and negative predictive value of 0.18 (0.15, 0.21) and 0.97 (0.96, 0.98).

CONCLUSION

EDLIPS may help identify patients at risk for ALI development early in the course of their ED presentation. This novel model may detect at-risk patients for treatment optimization and identify potential patients for ALI prevention trials.

摘要

背景

早期识别有发生急性肺损伤(ALI)风险的患者对于潜在的预防策略至关重要。我们旨在推导并验证一种急性肺损伤预测评分(EDLIPS),用于急诊科(ED)患者的多中心样本。

方法

我们对先前报道的多中心观察性研究中纳入的4361例ED患者进行了亚组分析。确定与随后发生ALI相关的ED风险因素和情况,并纳入EDLIPS模型。使用逻辑回归分析推导并验证评分。使用受试者工作特征曲线下面积(AUC)评估该模型,并与原始LIPS模型(源自择期高危手术患者和ED患者群体)以及急性生理学与慢性健康状况评估(APACHE II)评分进行比较。

结果

ALI的发生率为7.0%(303/4361)。EDLIPS区分发生ALI的患者和未发生ALI的患者,AUC为0.78(95%可信区间0.75,0.82),优于APACHE II的AUC 0.70(p≤0.001),与原始LIPS评分的AUC 0.80相似(p = 0.07)。在EDLIPS临界值为5(范围-0.5,15)时,ALI发生的阳性和阴性似然比(95%可信区间)分别为2.74(2.43,3.07)和0.39(0.30,0.49),敏感性为0.72(0.64,0.78),特异性为0.74(0.72,0.76),阳性和阴性预测值分别为0.18(0.15,0.21)和0.97(0.96,0.98)。

结论

EDLIPS可能有助于在ED就诊过程早期识别有发生ALI风险的患者。这种新模型可能检测出有风险的患者以优化治疗,并识别出可能参与ALI预防试验的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf20/3598475/7ff9d41e8541/1865-1380-5-33-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验