Suppr超能文献

基于 MSD 的活细胞中粒子运动贝叶斯分析方法。

Bayesian approach to MSD-based analysis of particle motion in live cells.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

出版信息

Biophys J. 2012 Aug 8;103(3):616-626. doi: 10.1016/j.bpj.2012.06.029.

Abstract

Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies.

摘要

使用活细胞成像进行粒子运动的定量跟踪是理解生物分子、细胞器和细胞运输机制的一种强大方法。然而,由于采样限制和生物异质性带来的噪声,从单个粒子轨迹中客观推断复杂的随机运动模型并非易事。在这里,我们提出了一种基于粒子均方位移的系统贝叶斯方法,用于对一组一般的竞争运动模型进行多重假设检验,该方法能够自动对粒子运动进行分类,正确考虑采样限制和相关噪声,同时根据奥卡姆剃刀适当惩罚模型复杂性,以避免过度拟合。我们使用已知潜在物理过程的模拟轨迹对该程序进行了严格测试,证明它选择了最简单的物理模型来解释观测数据。此外,我们还表明,计算出的模型概率为相关参数值的下游生物学解释提供了可靠性测试。随后,我们通过将其应用于不同的生物系统,包括经历各种复杂运动的染色体、着丝粒和膜受体的实验粒子轨迹,说明了该方法的广泛适用性。这种自动化和客观的贝叶斯框架可以轻松扩展到大量粒子轨迹,使其非常适合从高通量筛选、单细胞、组织和生物体水平的研究中对大量单个分子和细胞的复杂运动进行分类。

相似文献

1
Bayesian approach to MSD-based analysis of particle motion in live cells.
Biophys J. 2012 Aug 8;103(3):616-626. doi: 10.1016/j.bpj.2012.06.029.
2
Diffusion analysis of single particle trajectories in a Bayesian nonparametrics framework.
Phys Biol. 2020 Feb 10;17(2):025001. doi: 10.1088/1478-3975/ab64b3.
4
Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: theory.
Anal Chem. 2012 May 1;84(9):3871-9. doi: 10.1021/ac2034369. Epub 2012 Apr 15.
5
Single-Particle Diffusion Characterization by Deep Learning.
Biophys J. 2019 Jul 23;117(2):185-192. doi: 10.1016/j.bpj.2019.06.015. Epub 2019 Jun 22.
6
Occam's Razor in sensorimotor learning.
Proc Biol Sci. 2014 Mar 26;281(1783):20132952. doi: 10.1098/rspb.2013.2952. Print 2014 May 22.
9
Inferring transient particle transport dynamics in live cells.
Nat Methods. 2015 Sep;12(9):838-40. doi: 10.1038/nmeth.3483. Epub 2015 Jul 20.

引用本文的文献

1
Cellular optical imaging techniques: a dynamic advancing frontier.
Sci China Life Sci. 2025 Jul 16. doi: 10.1007/s11427-024-2916-5.
2
Tracing the Chromatin: From 3C to Live-Cell Imaging.
Chem Biomed Imaging. 2024 Jun 25;2(10):659-682. doi: 10.1021/cbmi.4c00033. eCollection 2024 Oct 28.
3
Genome-wide analysis of the biophysical properties of chromatin and nuclear proteins in living cells with Hi-D.
Nat Protoc. 2025 Jan;20(1):163-179. doi: 10.1038/s41596-024-01038-3. Epub 2024 Aug 28.
4
Computational drug development for membrane protein targets.
Nat Biotechnol. 2024 Feb;42(2):229-242. doi: 10.1038/s41587-023-01987-2. Epub 2024 Feb 15.
5
Deep learning assisted single particle tracking for automated correlation between diffusion and function.
bioRxiv. 2023 Nov 17:2023.11.16.567393. doi: 10.1101/2023.11.16.567393.
6
Coordinated peptidoglycan synthases and hydrolases stabilize the bacterial cell wall.
Nat Commun. 2023 Sep 2;14(1):5357. doi: 10.1038/s41467-023-41082-3.
8
3D Tortuosity and Diffusion Characterization in the Human Mineralized Collagen Fibril Using a Random Walk Model.
Bioengineering (Basel). 2023 May 7;10(5):558. doi: 10.3390/bioengineering10050558.
9
Palmitate-mediated disruption of the endoplasmic reticulum decreases intracellular vesicle motility.
Biophys J. 2023 Apr 4;122(7):1355-1363. doi: 10.1016/j.bpj.2023.03.001. Epub 2023 Mar 3.
10
Single-molecule localization microscopy.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00038-x. Epub 2021 Jun 3.

本文引用的文献

2
Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: theory.
Anal Chem. 2012 May 1;84(9):3871-9. doi: 10.1021/ac2034369. Epub 2012 Apr 15.
3
Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function.
Cell. 2011 Aug 19;146(4):593-606. doi: 10.1016/j.cell.2011.06.049.
5
Intracellular transport by an anchored homogeneously contracting F-actin meshwork.
Curr Biol. 2011 Apr 12;21(7):606-11. doi: 10.1016/j.cub.2011.03.002.
6
Analysis of molecular diffusion by first-passage time variance identifies the size of confinement zones.
Biophys J. 2011 Mar 16;100(6):1463-72. doi: 10.1016/j.bpj.2011.01.064.
8
Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041914. doi: 10.1103/PhysRevE.82.041914. Epub 2010 Oct 20.
9
Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm.
Phys Rev Lett. 2010 Jun 11;104(23):238102. doi: 10.1103/PhysRevLett.104.238102. Epub 2010 Jun 8.
10
Developing in vivo biophysics by fishing for single molecules.
Dev Biol. 2010 Nov 1;347(1):1-8. doi: 10.1016/j.ydbio.2010.08.004. Epub 2010 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验