Suppr超能文献

基于 MSD 的活细胞中粒子运动贝叶斯分析方法。

Bayesian approach to MSD-based analysis of particle motion in live cells.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

出版信息

Biophys J. 2012 Aug 8;103(3):616-626. doi: 10.1016/j.bpj.2012.06.029.

Abstract

Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies.

摘要

使用活细胞成像进行粒子运动的定量跟踪是理解生物分子、细胞器和细胞运输机制的一种强大方法。然而,由于采样限制和生物异质性带来的噪声,从单个粒子轨迹中客观推断复杂的随机运动模型并非易事。在这里,我们提出了一种基于粒子均方位移的系统贝叶斯方法,用于对一组一般的竞争运动模型进行多重假设检验,该方法能够自动对粒子运动进行分类,正确考虑采样限制和相关噪声,同时根据奥卡姆剃刀适当惩罚模型复杂性,以避免过度拟合。我们使用已知潜在物理过程的模拟轨迹对该程序进行了严格测试,证明它选择了最简单的物理模型来解释观测数据。此外,我们还表明,计算出的模型概率为相关参数值的下游生物学解释提供了可靠性测试。随后,我们通过将其应用于不同的生物系统,包括经历各种复杂运动的染色体、着丝粒和膜受体的实验粒子轨迹,说明了该方法的广泛适用性。这种自动化和客观的贝叶斯框架可以轻松扩展到大量粒子轨迹,使其非常适合从高通量筛选、单细胞、组织和生物体水平的研究中对大量单个分子和细胞的复杂运动进行分类。

相似文献

5
Single-Particle Diffusion Characterization by Deep Learning.基于深度学习的单颗粒扩散特征分析。
Biophys J. 2019 Jul 23;117(2):185-192. doi: 10.1016/j.bpj.2019.06.015. Epub 2019 Jun 22.
6
Occam's Razor in sensorimotor learning.奥卡姆剃刀在感觉运动学习中的应用。
Proc Biol Sci. 2014 Mar 26;281(1783):20132952. doi: 10.1098/rspb.2013.2952. Print 2014 May 22.
9
Inferring transient particle transport dynamics in live cells.推断活细胞中的瞬态粒子传输动力学。
Nat Methods. 2015 Sep;12(9):838-40. doi: 10.1038/nmeth.3483. Epub 2015 Jul 20.

引用本文的文献

2
Tracing the Chromatin: From 3C to Live-Cell Imaging.追踪染色质:从3C技术到活细胞成像
Chem Biomed Imaging. 2024 Jun 25;2(10):659-682. doi: 10.1021/cbmi.4c00033. eCollection 2024 Oct 28.
4
Computational drug development for membrane protein targets.计算药物研发用于膜蛋白靶标。
Nat Biotechnol. 2024 Feb;42(2):229-242. doi: 10.1038/s41587-023-01987-2. Epub 2024 Feb 15.
10
Single-molecule localization microscopy.单分子定位显微镜技术
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00038-x. Epub 2021 Jun 3.

本文引用的文献

10
Developing in vivo biophysics by fishing for single molecules.通过钓取单分子来发展体内生物物理学。
Dev Biol. 2010 Nov 1;347(1):1-8. doi: 10.1016/j.ydbio.2010.08.004. Epub 2010 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验