Suppr超能文献

奥卡姆剃刀在感觉运动学习中的应用。

Occam's Razor in sensorimotor learning.

机构信息

Max Planck Institute for Biological Cybernetics, , Tübingen, Germany, Max Planck Institute for Intelligent Systems, , Tübingen, Germany, Graduate Training Centre of Neuroscience, Tübingen, Germany.

出版信息

Proc Biol Sci. 2014 Mar 26;281(1783):20132952. doi: 10.1098/rspb.2013.2952. Print 2014 May 22.

Abstract

A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor--an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models-a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants' choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants' drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

摘要

大量近期研究表明,感觉运动系统使用概率模型来预测其环境,并根据贝叶斯统计学对未观察到的变量进行推断。贝叶斯统计学的一个重要特征是奥卡姆剃刀——在比较同样能很好地解释一些观测数据的竞争模型时,对于更简单的模型有一种内在的偏好。在这里,我们直接在感觉运动控制中测试奥卡姆剃刀。我们设计了一个感觉运动任务,参与者必须在由两个可能的概率模型之一生成的未观察到的曲线的噪声样本云中画线——一个具有大长度尺度的简单模型,导致平滑的曲线,和一个具有短长度尺度的复杂模型,导致更弯曲的曲线。在训练试验中,参与者被告知生成刺激的模型,以便他们可以学习每个模型的统计信息。在探测试验中,参与者随后暴露于模棱两可的刺激。在探测试验中,当模棱两可的刺激可以被两个模型同样好地拟合时,我们发现参与者明显更喜欢更简单的模型。此外,我们发现参与者的选择行为与贝叶斯奥卡姆剃刀的定量一致性。我们还表明,参与者绘制的轨迹与轨迹的贝叶斯预测分布中的样本相似,与两个非概率启发式方法显著不同。在两个对照实验中,我们表明,更简单模型的偏好不能简单地用物理努力的差异或对曲线平滑度的偏好来解释。我们的结果表明,奥卡姆剃刀是一种在感觉运动处理过程中已经存在的通用行为原则。

相似文献

1
Occam's Razor in sensorimotor learning.奥卡姆剃刀在感觉运动学习中的应用。
Proc Biol Sci. 2014 Mar 26;281(1783):20132952. doi: 10.1098/rspb.2013.2952. Print 2014 May 22.
3
Bayesian Occam's Razor Is a Razor of the People.贝叶斯奥卡姆剃刀是大众的剃刀。
Cogn Sci. 2018 May;42(4):1345-1359. doi: 10.1111/cogs.12573. Epub 2017 Nov 21.
4
Razor sharp: The role of Occam's razor in science.剃刀锋利:奥卡姆剃刀在科学中的作用。
Ann N Y Acad Sci. 2023 Dec;1530(1):8-17. doi: 10.1111/nyas.15086. Epub 2023 Nov 29.
5
Perceptual estimation obeys Occam's razor.感知估计服从奥卡姆剃刀。
Front Psychol. 2013 Sep 23;4:623. doi: 10.3389/fpsyg.2013.00623. eCollection 2013.
6
Occam's razor and Hickam's dictum: a dermatologic perspective.奥卡姆剃刀和希卡姆定律:皮肤科视角。
Diagnosis (Berl). 2022 Nov 18;10(2):96-99. doi: 10.1515/dx-2022-0093. eCollection 2023 May 1.
8
How Occam's razor guides human decision-making.奥卡姆剃刀如何指导人类决策。
bioRxiv. 2025 Mar 16:2023.01.10.523479. doi: 10.1101/2023.01.10.523479.
10
Achieving Occam's razor: Deep learning for optimal model reduction.达到奥卡姆剃刀原则:深度学习用于最优模型约简。
PLoS Comput Biol. 2024 Jul 18;20(7):e1012283. doi: 10.1371/journal.pcbi.1012283. eCollection 2024 Jul.

引用本文的文献

2
Natural language syntax complies with the free-energy principle.自然语言句法符合自由能原理。
Synthese. 2024;203(5):154. doi: 10.1007/s11229-024-04566-3. Epub 2024 May 3.
3
How Occam's razor guides human decision-making.奥卡姆剃刀如何指导人类决策。
bioRxiv. 2025 Mar 16:2023.01.10.523479. doi: 10.1101/2023.01.10.523479.
5
What is optimal in optimal inference?最优推理中的“最优”指的是什么?
Curr Opin Behav Sci. 2019 Oct;29:117-126. doi: 10.1016/j.cobeha.2019.07.008. Epub 2019 Aug 22.
7
Computations underlying sensorimotor learning.感觉运动学习的基础计算
Curr Opin Neurobiol. 2016 Apr;37:7-11. doi: 10.1016/j.conb.2015.12.003. Epub 2015 Dec 23.
8
Structure Learning in Bayesian Sensorimotor Integration.贝叶斯感觉运动整合中的结构学习
PLoS Comput Biol. 2015 Aug 25;11(8):e1004369. doi: 10.1371/journal.pcbi.1004369. eCollection 2015 Aug.

本文引用的文献

1
Perceptual estimation obeys Occam's razor.感知估计服从奥卡姆剃刀。
Front Psychol. 2013 Sep 23;4:623. doi: 10.3389/fpsyg.2013.00623. eCollection 2013.
3
A sensorimotor paradigm for Bayesian model selection.一种用于贝叶斯模型选择的感觉运动范式。
Front Hum Neurosci. 2012 Oct 19;6:291. doi: 10.3389/fnhum.2012.00291. eCollection 2012.
4
Computational mechanisms of sensorimotor control.感觉运动控制的计算机制。
Neuron. 2011 Nov 3;72(3):425-42. doi: 10.1016/j.neuron.2011.10.006.
5
Inferring visuomotor priors for sensorimotor learning.推断感觉运动学习的视觉运动先验。
PLoS Comput Biol. 2011 Mar;7(3):e1001112. doi: 10.1371/journal.pcbi.1001112. Epub 2011 Mar 31.
8
Structure learning in a sensorimotor association task.在感觉运动联想任务中的结构学习。
PLoS One. 2010 Jan 29;5(1):e8973. doi: 10.1371/journal.pone.0008973.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验