Suppr超能文献

在四壁骨内缺损模型中,可生物降解纳米纤维多药物膜释放行为的临床前实验。

Preclinical experiments on the release behavior of biodegradable nanofibrous multipharmaceutical membranes in a model of four-wall intrabony defect.

机构信息

Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan.

出版信息

Antimicrob Agents Chemother. 2013 Jan;57(1):9-14. doi: 10.1128/AAC.00506-12. Epub 2012 Sep 4.

Abstract

Guided tissue regeneration (GTR) therapy has been widely used to regenerate lost periodontium from periodontal disease. However, in terms of regenerative periodontal therapy, a multidrug-loaded biodegradable carrier can be even more promising in dealing with periodontal disease. In the current study, we fabricated biodegradable nanofibrous collagen membranes that were loaded with amoxicillin, metronidazole, and lidocaine by an electrospinning technique. The in vitro release behavior and the cytotoxicity of the membranes were investigated. A four-wall intrabony defect was created in rabbits for in vivo release analysis. The bioactivity of the released antibiotics was also examined. The experimental results showed that the drug-loaded collagen membranes could provide sustainable release of effective amoxicillin, metronidazole, and lidocaine for 28, 56, and 8 days, respectively, in vivo. Furthermore, the bioactivity of the released antibiotics remained high, with average bioactivities of 50.5% for amoxicillin against Staphylococcus aureus and 58.6% for metronidazole against Escherichia coli. The biodegradable nanofibrous multipharmaceutical membranes developed in this study may provide a promising solution for regenerative periodontal therapy.

摘要

引导组织再生(GTR)疗法已广泛用于再生牙周病引起的牙周组织丧失。然而,在再生牙周治疗方面,载多药物的可生物降解载体在治疗牙周病方面更具前景。在本研究中,我们通过静电纺丝技术制备了载有阿莫西林、甲硝唑和利多卡因的可生物降解纳米纤维胶原膜。研究了膜的体外释放行为和细胞毒性。在兔子中建立了四壁骨内缺损以进行体内释放分析。还检测了释放抗生素的生物活性。实验结果表明,载药胶原膜可分别在体内持续释放有效剂量的阿莫西林、甲硝唑和利多卡因 28、56 和 8 天。此外,释放抗生素的生物活性保持较高,阿莫西林对金黄色葡萄球菌的平均生物活性为 50.5%,甲硝唑对大肠杆菌的平均生物活性为 58.6%。本研究中开发的可生物降解纳米纤维多药物膜可能为再生牙周治疗提供了一种有前途的解决方案。

相似文献

2
Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes.
Int J Pharm. 2012 Jul 1;430(1-2):335-41. doi: 10.1016/j.ijpharm.2012.04.010. Epub 2012 Apr 12.
5
Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration.
Colloids Surf B Biointerfaces. 2019 Apr 1;176:219-229. doi: 10.1016/j.colsurfb.2018.12.071. Epub 2019 Jan 3.
7
Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous Mats.
Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:526-539. doi: 10.1016/j.msec.2018.06.031. Epub 2018 Jun 25.
8
Evaluation of metronidazole-loaded poly(3-hydroxybutyrate) membranes to potential application in periodontitis treatment.
J Biomed Mater Res B Appl Biomater. 2016 Jan;104(1):106-15. doi: 10.1002/jbm.b.33357. Epub 2015 Feb 6.

引用本文的文献

1
Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies.
Regen Biomater. 2024 Jul 4;11:rbae078. doi: 10.1093/rb/rbae078. eCollection 2024.
2
Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges.
Pharmaceutics. 2020 Dec 22;13(1):4. doi: 10.3390/pharmaceutics13010004.
3
Advance of Nano-Composite Electrospun Fibers in Periodontal Regeneration.
Front Chem. 2019 Jul 10;7:495. doi: 10.3389/fchem.2019.00495. eCollection 2019.
4
Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration.
Dent Mater. 2015 Sep;31(9):1038-51. doi: 10.1016/j.dental.2015.06.004. Epub 2015 Jun 24.

本文引用的文献

1
In vitro and in vivo investigation of drug-eluting implants for the treatment of periodontal disease.
AAPS PharmSciTech. 2011 Dec;12(4):1110-5. doi: 10.1208/s12249-011-9681-3. Epub 2011 Aug 31.
2
Novel biodegradable composite wound dressings with controlled release of antibiotics: results in a guinea pig burn model.
Burns. 2011 Aug;37(5):896-904. doi: 10.1016/j.burns.2011.02.010. Epub 2011 Apr 3.
3
Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds.
Biomaterials. 2011 Jan;32(1):279-87. doi: 10.1016/j.biomaterials.2010.08.089. Epub 2010 Sep 26.
5
N-methyl pyrrolidone as a potent bone morphogenetic protein enhancer for bone tissue regeneration.
Tissue Eng Part A. 2009 Oct;15(10):2955-63. doi: 10.1089/ten.TEA.2009.0009.
6
Antibiotic-eluting medical devices for various applications.
J Control Release. 2008 Sep 24;130(3):202-15. doi: 10.1016/j.jconrel.2008.05.020. Epub 2008 Aug 6.
8
Polylactide and polyglycolide sponge used in human extraction sockets: bone formation following 3 months after its application.
Clin Oral Implants Res. 2008 Jan;19(1):26-31. doi: 10.1111/j.1600-0501.2007.01311.x. Epub 2007 Oct 17.
9
A prospective clinical study of non-submerged immediate implants: clinical outcomes and esthetic results.
Clin Oral Implants Res. 2007 Oct;18(5):552-62. doi: 10.1111/j.1600-0501.2007.01388.x. Epub 2007 Jun 30.
10
Bone augmentation techniques.
J Periodontol. 2007 Mar;78(3):377-96. doi: 10.1902/jop.2007.060048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验