Suppr超能文献

合成代谢工程——设计嵌合代谢途径的新颖、简单技术。

Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway.

机构信息

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

出版信息

Microb Cell Fact. 2012 Sep 6;11:120. doi: 10.1186/1475-2859-11-120.

Abstract

BACKGROUND

The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed.

RESULTS

A chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31.

CONCLUSIONS

In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as "synthetic metabolic engineering". Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals or materials on demand.

摘要

背景

将生物技术融入化学制造已被视为构建可持续社会的关键技术。然而,由于生物催化化学反应的复杂性,涉及产品收率的不可预测性和发酵过程的麻烦控制,其实际应用往往受到限制。克服这些限制的一种可能策略是消除对活微生物的使用,而只使用代谢途径中涉及的酶。使用在高温下生产嗜热酶的重组中温菌会导致本地蛋白质变性和消除不需要的副反应;因此,可以容易地制备高度选择性和稳定的生物催化模块。通过合理组合这些模块,可以设计和构建专门用于化学制造的人工合成途径。

结果

通过使用过量表达来自 Thermus thermophilus 的七种糖酵解酶之一、Pyrococcus horikoshii 的辅酶独立磷酸甘油酸变位酶或 Thermococcus kodakarensis 的非磷酸化甘油醛-3-磷酸脱氢酶的九种重组大肠杆菌菌株,构建了具有平衡的 ATP 和 ADP 消耗和再生的嵌合 Embden-Meyerhof (EM) 途径。通过将该途径与 Thermus malate/lactate 脱氢酶偶联,从葡萄糖中产生了等摩尔量的乳酸,总 ATP 周转率数为 31。

结论

在这项研究中,开发了一种用于定制代谢途径的灵活设计的新颖简单技术。该概念已通过非 ATP 形成的嵌合 EM 途径得到验证。我们将这项技术命名为“合成代谢工程”。我们的技术原则上适用于所有只要能够在宿主中功能性表达的嗜热酶,因此有望按需用于任何化学品或材料的生物催化制造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef0/3512521/5fc0af861f62/1475-2859-11-120-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验