Suppr超能文献

DNA 折纸递送系统用于癌症治疗,具有可调释药性能。

DNA origami delivery system for cancer therapy with tunable release properties.

机构信息

Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, SE-171 77 Stockholm, Sweden.

出版信息

ACS Nano. 2012 Oct 23;6(10):8684-91. doi: 10.1021/nn3022662. Epub 2012 Sep 13.

Abstract

In the assembly of DNA nanostructures, the specificity of Watson-Crick base pairing is used to control matter at the nanoscale. Using this technology for drug delivery is a promising route toward the magic bullet concept, as it would allow the realization of complex assemblies that co-localize drugs, targeting ligands and other functionalities in one nanostructure. Anthracyclines' mechanism of action in cancer therapy is to intercalate DNA, and since DNA nanotechnology allows for such a high degree of customization, we hypothesized that this would allow us to tune the DNA nanostructures for optimal delivery of the anthracycline doxorubicin (Dox) to human breast cancer cells. We have tested two DNA origami nanostructures on three different breast cancer cell lines (MDA-MB-231, MDA-MB-468, and MCF-7). The different nanostructures were designed to exhibit varying degrees of global twist, leading to different amounts of relaxation in the DNA double-helix structure. By tuning the nanostructure design we are able to (i) tune the encapsulation efficiency and the release rate of the drug and (ii) increase the cytotoxicity and lower the intracellular elimination rate when compared to free Dox. Enhanced apoptosis induced by the delivery system in breast cancer cells was investigated using flow cytometry. The findings indicate that DNA origami nanostructures represent an efficient delivery system for Dox, resulting in high degrees of internalization and increased induction of programmed cell death in breast cancer cells. In addition, by designing the structures to exhibit different degrees of twist, we are able to rationally control and tailor the drug release kinetics.

摘要

在 DNA 纳米结构的组装中,Watson-Crick 碱基配对的特异性被用于控制纳米尺度的物质。将这项技术应用于药物输送是实现“神奇子弹”概念的一种很有前途的途径,因为它可以实现将药物、靶向配体和其他功能在一个纳米结构中共定位的复杂组装。蒽环类抗生素在癌症治疗中的作用机制是嵌入 DNA,而由于 DNA 纳米技术允许如此高的定制程度,我们假设这将使我们能够调整 DNA 纳米结构,以实现阿霉素(Dox)对人类乳腺癌细胞的最佳输送。我们已经在三种不同的乳腺癌细胞系(MDA-MB-231、MDA-MB-468 和 MCF-7)上测试了两种 DNA 折纸纳米结构。这些不同的纳米结构被设计成具有不同程度的整体扭曲,从而导致 DNA 双螺旋结构的不同程度的松弛。通过调整纳米结构的设计,我们能够(i)调整药物的封装效率和释放速率,(ii)与游离 Dox 相比,提高细胞毒性并降低细胞内消除率。通过流式细胞术研究了该递药系统在乳腺癌细胞中诱导的增强凋亡。研究结果表明,DNA 折纸纳米结构代表了一种有效的 Dox 输送系统,导致乳腺癌细胞的内化程度很高,并增加了程序性细胞死亡的诱导。此外,通过设计结构来表现出不同程度的扭曲,我们能够合理地控制和调整药物释放动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验