Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea.
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea.
Nat Commun. 2024 Jul 31;15(1):6446. doi: 10.1038/s41467-024-50871-3.
Chemo-mechanical deformation of structured DNA assemblies driven by DNA-binding ligands has offered promising avenues for biological and therapeutic applications. However, it remains elusive how to effectively model and predict their effects on the deformation and mechanical properties of DNA structures. Here, we present a computational framework for simulating chemo-mechanical change of structured DNA assemblies. We particularly quantify the effects of ethidium bromide (EtBr) intercalation on the geometry and mechanical properties of DNA base-pairs through molecular dynamics simulations and integrated them into finite-element-based structural analysis to predict the shape and properties of DNA objects. The proposed model captures various structural changes induced by EtBr-binding such as shape variation, flexibility modulation, and supercoiling instability. It enables a rational design of structured DNA assemblies with tunable shapes and mechanical properties by binding molecules.
化学机械变形的结构化 DNA 组装由 DNA 结合配体驱动,为生物和治疗应用提供了有前景的途径。然而,如何有效地模拟和预测它们对 DNA 结构的变形和力学性能的影响仍然难以捉摸。在这里,我们提出了一种模拟结构化 DNA 组装的化学机械变化的计算框架。我们通过分子动力学模拟特别量化了溴化乙锭(EtBr)嵌入对 DNA 碱基对的几何形状和力学性能的影响,并将其集成到基于有限元的结构分析中,以预测 DNA 物体的形状和性质。所提出的模型捕获了由 EtBr 结合引起的各种结构变化,例如形状变化、柔韧性调制和超螺旋不稳定性。它通过结合分子实现了具有可调形状和力学性能的结构化 DNA 组装的合理设计。