Kwon Hyeonjun, Shin Jihoon, Sun Siqi, Zhu Rong, Stainer Sarah, Hinterdorfer Peter, Cho Sang-Joon, Kim Dong-Hwan, Oh Yoo Jin
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria.
ACS Nano. 2025 May 27;19(20):19353-19363. doi: 10.1021/acsnano.5c03100. Epub 2025 Apr 9.
The capability for varied functionalization and precise control at the nanoscale are significant advantages of DNA nanostructures. In the assembly of DNA nanostructure, the surface-assisted growth method utilizing double-crossover (DX) tile structures facilitates nucleation at relatively low concentrations on the surface based on electrostatic interactions, thereby enabling crystal growth over large areas. However, in surface-assisted growth, the geometrical hindrance of vertical structures on the DX tile structure surface makes it challenging to conjugate DNA nanostructures into fabricated surfaces. Here, the surface-assisted growth method was employed to extend the DX tile growth for forming vertical structure arrays on the substrate, providing attachment sites for functionalization on uniformly covered substrates at the macroscopic scale. Additionally, the spacing of the vertical structure arrays was demonstrated to be controllable through the strategic design of the repeating unit tiles that construct the DX crystals.
DNA纳米结构的显著优势在于其在纳米尺度上具有多样化功能化和精确控制的能力。在DNA纳米结构的组装过程中,利用双交叉(DX)瓦片结构的表面辅助生长方法基于静电相互作用,有助于在相对低浓度的表面上成核,从而实现大面积的晶体生长。然而,在表面辅助生长中,DX瓦片结构表面上垂直结构的几何位阻使得将DNA纳米结构缀合到制造的表面具有挑战性。在此,采用表面辅助生长方法来扩展DX瓦片生长,以在基板上形成垂直结构阵列,从而在宏观尺度上为均匀覆盖的基板上的功能化提供附着位点。此外,通过构建DX晶体的重复单元瓦片的策略性设计,证明垂直结构阵列的间距是可控的。