Suppr超能文献

利用中等密度标记面板精细定位数量性状位点:群体结构的效率及连锁不平衡连锁分析模型的比较

Fine-mapping quantitative trait loci with a medium density marker panel: efficiency of population structures and comparison of linkage disequilibrium linkage analysis models.

作者信息

Roldan Dana L, Gilbert Hélène, Henshall John M, Legarra Andrés, Elsen Jean-Michel

机构信息

Instituto de Genética CICVyA-INTA Castelar, cc 1712, Buenos Aires, Argentina.

出版信息

Genet Res (Camb). 2012 Aug;94(4):223-34. doi: 10.1017/S0016672312000407.

Abstract

Recently, a Haley-Knott-type regression method using combined linkage disequilibrium and linkage analyses (LDLA) was proposed to map quantitative trait loci (QTLs). Chromosome of 5 and 25 cM with 0·25 and 0·05 cM, respectively, between markers were simulated. The differences between the LDLA approaches with regard to QTL position accuracy were very limited, with a significantly better mean square error (MSE) with the LDLA regression (LDLA_reg) in sparse map cases; the contrary was observed, but not significantly, in dense map situations. The computing time required for the LDLA variance components (LDLA_vc) model was much higher than the LDLA_reg model. The precision of QTL position estimation was compared for four numbers of half-sib families, four different family sizes and two experimental designs (half-sibs, and full- and half-sibs). Regarding the number of families, MSE values were lowest for 15 or 50 half-sib families, differences not being significant. We observed that the greater the number of progenies per sire, the more accurate the QTL position. However, for a fixed population size, reducing the number of families (e.g. using a small number of large full-sib families) could lead to less accuracy of estimated QTL position.

摘要

最近,一种结合连锁不平衡和连锁分析(LDLA)的海利-诺特型回归方法被提出来用于定位数量性状基因座(QTL)。分别模拟了标记间间距为5和25厘摩(cM)、标记密度分别为0·25和0·05厘摩的染色体。LDLA方法在QTL位置准确性方面的差异非常有限,在稀疏图谱情况下,LDLA回归(LDLA_reg)的均方误差(MSE)明显更好;在密集图谱情况下观察到相反的情况,但不显著。LDLA方差分量(LDLA_vc)模型所需的计算时间远高于LDLA_reg模型。针对四种半同胞家系数量、四种不同家系规模以及两种实验设计(半同胞,全同胞和半同胞),比较了QTL位置估计的精度。关于家系数量,15个或50个半同胞家系的MSE值最低,差异不显著。我们观察到每个父本的后代数量越多,QTL位置就越准确。然而,对于固定的群体大小,减少家系数量(例如使用少量大型全同胞家系)可能会导致估计的QTL位置准确性降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f23/3487687/8b6a9efc201c/S0016672312000407_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验