1] Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland [2] Department of Biology, University of Oulu, Oulu, Finland [3] Department of Mathematical Sciences, University of Oulu, Oulu, Finland [4] Biocenter Oulu, University of Oulu, Oulu, Finland.
1] Department of Biology, University of Oulu, Oulu, Finland [2] Department of Mathematical Sciences, University of Oulu, Oulu, Finland [3] Biocenter Oulu, University of Oulu, Oulu, Finland.
Heredity (Edinb). 2014 Mar;112(3):351-60. doi: 10.1038/hdy.2013.111. Epub 2013 Nov 20.
Quantitative trait loci (QTL) affecting the phenotype of interest can be detected using linkage analysis (LA), linkage disequilibrium (LD) mapping or a combination of both (LDLA). The LA approach uses information from recombination events within the observed pedigree and LD mapping from the historical recombinations within the unobserved pedigree. We propose the Bayesian variable selection approach for combined LDLA analysis for single-nucleotide polymorphism (SNP) data. The novel approach uses both sources of information simultaneously as is commonly done in plant and animal genetics, but it makes fewer assumptions about population demography than previous LDLA methods. This differs from approaches in human genetics, where LDLA methods use LA information conditional on LD information or the other way round. We argue that the multilocus LDLA model is more powerful for the detection of phenotype-genotype associations than single-locus LDLA analysis. To illustrate the performance of the Bayesian multilocus LDLA method, we analyzed simulation replicates based on real SNP genotype data from small three-generational CEPH families and compared the results with commonly used quantitative transmission disequilibrium test (QTDT). This paper is intended to be conceptual in the sense that it is not meant to be a practical method for analyzing high-density SNP data, which is more common. Our aim was to test whether this approach can function in principle.
可以使用连锁分析 (LA)、连锁不平衡 (LD) 图谱或两者结合 (LDLA) 来检测影响感兴趣表型的数量性状基因座 (QTL)。LA 方法利用观察家系内重组事件的信息和未观察家系内历史重组的 LD 图谱。我们提出了用于单核苷酸多态性 (SNP) 数据的联合 LDLA 分析的贝叶斯变量选择方法。这种新方法同时利用两种信息来源,这在植物和动物遗传学中很常见,但与以前的 LDLA 方法相比,它对群体人口统计学的假设更少。这与人类遗传学中的方法不同,在人类遗传学中,LDLA 方法使用基于 LD 信息或其他信息的 LA 信息。我们认为,与单基因座 LDLA 分析相比,多基因座 LDLA 模型在检测表型-基因型关联方面更有效。为了说明贝叶斯多基因座 LDLA 方法的性能,我们基于小型三代 CEPH 家系的真实 SNP 基因型数据分析了模拟重复,并将结果与常用的定量传递不平衡测试 (QTDT) 进行了比较。本文旨在从概念上说明问题,而不是分析更常见的高密度 SNP 数据的实用方法。我们的目的是检验这种方法是否可以在原理上起作用。