National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
PLoS One. 2012;7(8):e43322. doi: 10.1371/journal.pone.0043322. Epub 2012 Aug 28.
Quinoxaline 1, 4-dioxides (QdNOs) has been used in animals as antimicrobial agents and growth promoters for decades. However, the resistance to QdNOs in pathogenic bacteria raises worldwide concern but it is barely known. To explore the molecular mechanism involved in development of QdNOs resistance in Escherichia coli, 6 strains selected by QdNOs in vitro and 21 strains isolated from QdNOs-used swine farm were subjected to MIC determination and PCR amplification of oqxA gene. A conjugative transfer was carried out to evaluate the transfer risk of QdNOs resistant determinant. Furthermore, the transcriptional profile of a QdNOs-resistant E. coli (79O4-2) selected in vitro with its parent strain 79-161 was assayed with a prokaryotic suppression subtractive hybridization (SSH) PCR cDNA subtraction. The result showed that more than 95% (20/21) clinical isolates were oqxA positive, while all the 6 induced QdNOs-resistant strains carried no oqxA gene and exhibited low frequency of conjugation. 44 fragments were identified by SSH PCR subtraction in the QdNOs-resistant strain 79O4-2. 18 cDNAs were involved in biosynthesis of Fe-S cluster (narH), protein (rpoA, trmD, truA, glyS, ileS, rplFCX, rpsH, fusA), lipoate (lipA), lipid A (lpxC), trehalose (otsA), CTP(pyrG) and others molecular. The 11 cDNAs were related to metabolism or degradation of glycolysis (gpmA and pgi) and proteins (clpX, clpA, pepN and fkpB). The atpADG and ubiB genes were associated with ATP biosynthesis and electron transport chain. The pathway of the functional genes revealed that E. coli may adapt the stress generated by QdNOs or develop specific QdNOs-resistance by activation of antioxidative agents biosynthesis (lipoate and trehalose), protein biosynthesis, glycolysis and oxidative phosphorylation. This study initially reveals the possible molecular mechanism involved in the development of QdNOs-resistance in E. coli, providing with novel insights in prediction and assessment of the emergency and horizontal transfer of QdNOs-resistance in E. coli.
喹喔啉 1,4-二氧化物 (QdNOs) 作为抗菌剂和生长促进剂已在动物中使用了几十年。然而,病原菌对 QdNOs 的耐药性引起了全球关注,但对此知之甚少。为了探索大肠杆菌对 QdNOs 耐药性发展的分子机制,我们对 6 株体外筛选的 QdNOs 耐药株和 21 株从 QdNOs 养猪场分离的菌株进行了 MIC 测定和 oqxA 基因的 PCR 扩增。进行了接合转移以评估 QdNOs 耐药决定因子的转移风险。此外,我们还对体外筛选的 QdNOs 耐药大肠杆菌(79O4-2)与其亲本 79-161 的转录谱进行了分析,方法是采用原核抑制性消减杂交(SSH)PCR cDNA 消减。结果表明,超过 95%(21/21)的临床分离株为 oqxA 阳性,而 6 株诱导的 QdNOs 耐药株均不携带 oqxA 基因,且接合频率较低。在 QdNOs 耐药株 79O4-2 中,通过 SSH PCR 消减鉴定出 44 个片段。18 个 cDNA 参与 Fe-S 簇(narH)、蛋白质(rpoA、trmD、truA、glyS、ileS、rplFCX、rpsH、fusA)、脂酰(lipA)、脂多糖(lpxC)、海藻糖(otsA)、CTP(pyrG)和其他分子的生物合成。11 个 cDNA 与糖酵解(gpmA 和 pgi)和蛋白质(clpX、clpA、pepN 和 fkpB)的代谢或降解有关。atpADG 和 ubiB 基因与 ATP 合成和电子传递链有关。功能基因途径表明,大肠杆菌可能通过激活抗氧化剂生物合成(脂酰和海藻糖)、蛋白质生物合成、糖酵解和氧化磷酸化来适应 QdNOs 产生的应激或发展特定的 QdNOs 耐药性。本研究初步揭示了大肠杆菌对 QdNOs 耐药性发展的可能分子机制,为预测和评估大肠杆菌中 QdNOs 耐药性的紧急情况和水平转移提供了新的见解。