Suppr超能文献

WCC 对()基因的生物钟调节对于的节律性糖原代谢至关重要。

Circadian clock regulation of the glycogen synthase () gene by WCC is critical for rhythmic glycogen metabolism in .

机构信息

Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267-0575.

Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, 14800-060 Araraquara, SP, Brazil.

出版信息

Proc Natl Acad Sci U S A. 2019 May 21;116(21):10435-10440. doi: 10.1073/pnas.1815360116. Epub 2019 May 2.

Abstract

Circadian clocks generate rhythms in cellular functions, including metabolism, to align biological processes with the 24-hour environment. Disruption of this alignment by shift work alters glucose homeostasis. Glucose homeostasis depends on signaling and allosteric control; however, the molecular mechanisms linking the clock to glucose homeostasis remain largely unknown. We investigated the molecular links between the clock and glycogen metabolism, a conserved glucose homeostatic process, in We find that glycogen synthase () mRNA, glycogen phosphorylase () mRNA, and glycogen levels, accumulate with a daily rhythm controlled by the circadian clock. Because the synthase and phosphorylase are critical to homeostasis, their roles in generating glycogen rhythms were investigated. We demonstrate that while was necessary for glycogen production, constitutive expression resulted in high and arrhythmic glycogen levels, and deletion of abolished mRNA rhythms and rhythmic glycogen accumulation. Furthermore, we show that promoter activity is rhythmic and is directly controlled by core clock component white collar complex (WCC). We also discovered that WCC-regulated transcription factors, VOS-1 and CSP-1, modulate the phase and amplitude of rhythmic mRNA, and these changes are similarly reflected in glycogen oscillations. Together, these data indicate the importance of clock-regulated transcription over signaling or allosteric control of glycogen rhythms, a mechanism that is potentially conserved in mammals and critical to metabolic homeostasis.

摘要

生物钟在细胞功能中产生节律,包括代谢,以使生物过程与 24 小时环境同步。轮班工作打乱这种同步会改变葡萄糖稳态。葡萄糖稳态依赖于信号转导和变构控制;然而,将时钟与葡萄糖稳态联系起来的分子机制在很大程度上仍然未知。我们研究了生物钟与糖原代谢之间的分子联系,糖原代谢是一种保守的葡萄糖稳态过程,在酵母中发现糖原合酶 () mRNA、糖原磷酸化酶 () mRNA 和糖原水平呈昼夜节律性积累,受生物钟控制。由于合酶和磷酸化酶对稳态至关重要,因此研究了它们在产生糖原节律中的作用。我们证明,虽然 对于糖原的产生是必需的,但组成型表达 会导致高且无节律的糖原水平,并且 缺失会消除 mRNA 节律和节律性糖原积累。此外,我们表明 启动子活性具有节律性,并且受核心时钟组件白 collar 复合物 (WCC) 的直接控制。我们还发现,WCC 调节的转录因子 VOS-1 和 CSP-1 调节节律性 mRNA 的相位和幅度,这些变化在糖原振荡中也得到类似反映。总之,这些数据表明,时钟调节的 转录对糖原节律的信号转导或变构控制很重要,这一机制在哺乳动物中可能是保守的,对代谢稳态至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cfb/6534987/c7841abca0dd/pnas.1815360116fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验