Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
PLoS One. 2012;7(8):e44428. doi: 10.1371/journal.pone.0044428. Epub 2012 Aug 31.
At rest, spontaneous brain activity measured by fMRI is summarized by a number of distinct resting state networks (RSNs) following similar temporal time courses. Such networks have been consistently identified across subjects using spatial ICA (independent component analysis). Moreover, graph theory-based network analyses have also been applied to resting-state fMRI data, identifying similar RSNs, although typically at a coarser spatial resolution. In this work, we examined resting-state fMRI networks from 194 subjects at a voxel-level resolution, and examined the consistency of RSNs across subjects using a metric called scaled inclusivity (SI), which summarizes consistency of modular partitions across networks. Our SI analyses indicated that some RSNs are robust across subjects, comparable to the corresponding RSNs identified by ICA. We also found that some commonly reported RSNs are less consistent across subjects. This is the first direct comparison of RSNs between ICAs and graph-based network analyses at a comparable resolution.
在静息状态下,fMRI 测量的自发脑活动可以通过许多不同的静息态网络 (RSN) 来概括,这些网络遵循相似的时间过程。使用空间独立成分分析 (ICA),可以在不同的被试中一致地识别出这些网络。此外,基于图论的网络分析也被应用于静息态 fMRI 数据,识别出相似的 RSN,但通常在较粗糙的空间分辨率下。在这项工作中,我们以体素分辨率检查了 194 个被试的静息态 fMRI 网络,并使用一种称为比例包容性 (SI) 的度量来检查网络之间 RSN 的一致性,该度量概括了网络之间模块划分的一致性。我们的 SI 分析表明,一些 RSN 在被试间具有稳健性,与 ICA 识别的相应 RSN 相当。我们还发现,一些常见报道的 RSN 在被试间的一致性较差。这是在可比分辨率下对 ICA 和基于图的网络分析之间的 RSN 进行的首次直接比较。