Suppr超能文献

基于指数随机图模型的基于群组的全脑连接网络构建方法。

An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks.

机构信息

Department of Biostatistical Sciences, Wake Forest University School of Medicine Winston-Salem, NC27157, USA.

出版信息

Neuroimage. 2012 Apr 2;60(2):1117-26. doi: 10.1016/j.neuroimage.2012.01.071. Epub 2012 Jan 17.

Abstract

Group-based brain connectivity networks have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Accurately constructing these networks presents a daunting challenge given the difficulties associated with accounting for inter-subject topological variability. Viable approaches to this task must engender networks that capture the constitutive topological properties of the group of subjects' networks that it is aiming to represent. The conventional approach has been to use a mean or median correlation network (Achard et al., 2006; Song et al., 2009; Zuo et al., 2011) to embody a group of networks. However, the degree to which their topological properties conform with those of the groups that they are purported to represent has yet to be explored. Here we investigate the performance of these mean and median correlation networks. We also propose an alternative approach based on an exponential random graph modeling framework and compare its performance to that of the aforementioned conventional approach. Simpson et al. (2011) illustrated the utility of exponential random graph models (ERGMs) for creating brain networks that capture the topological characteristics of a single subject's brain network. However, their advantageousness in the context of producing a brain network that "represents" a group of brain networks has yet to be examined. Here we show that our proposed ERGM approach outperforms the conventional mean and median correlation based approaches and provides an accurate and flexible method for constructing group-based representative brain networks.

摘要

基于群组的脑连接网络对于那些有兴趣深入了解复杂脑功能以及不同心理状态和疾病条件下脑功能如何变化的研究人员具有很大的吸引力。由于难以考虑到受试者之间拓扑变异性的问题,因此准确构建这些网络是一项艰巨的挑战。为了完成这项任务,可行的方法必须构建出能够捕捉到它所代表的受试者群组网络的基本拓扑特性的网络。传统的方法是使用平均或中位数相关网络(Achard 等人,2006 年;Song 等人,2009 年;Zuo 等人,2011 年)来体现一组网络。然而,它们的拓扑特性与它们声称要代表的群组的拓扑特性之间的一致性程度尚未得到探索。在这里,我们研究了这些平均和中位数相关网络的性能。我们还提出了一种基于指数随机图建模框架的替代方法,并将其性能与上述传统方法进行了比较。Simpson 等人(2011 年)说明了指数随机图模型(ERGMs)在创建能够捕捉单个受试者脑网络拓扑特征的脑网络方面的效用。然而,它们在产生“代表”一组脑网络的脑网络方面的优势尚未得到检验。在这里,我们表明,我们提出的 ERGM 方法优于传统的基于平均和中位数的相关方法,为构建基于群组的代表性脑网络提供了一种准确、灵活的方法。

相似文献

4
Exponential random graph modeling for complex brain networks.复杂脑网络的指数随机图模型。
PLoS One. 2011;6(5):e20039. doi: 10.1371/journal.pone.0020039. Epub 2011 May 25.
10
A method for independent component graph analysis of resting-state fMRI.静息态 fMRI 的独立成分图分析方法。
Brain Behav. 2017 Feb 16;7(3):e00626. doi: 10.1002/brb3.626. eCollection 2017 Mar.

引用本文的文献

1
Statistical Brain Network Analysis.统计脑网络分析
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.
5
Group-level comparison of brain connectivity networks.脑连接网络的组水平比较。
BMC Med Res Methodol. 2022 Oct 17;22(1):273. doi: 10.1186/s12874-022-01712-8.
7
Brain Network Analysis: A Review on Multivariate Analytical Methods.脑网络分析:多元分析方法综述。
Brain Connect. 2023 Mar;13(2):64-79. doi: 10.1089/brain.2022.0007. Epub 2022 Oct 31.
9
A mixed-modeling framework for whole-brain dynamic network analysis.用于全脑动态网络分析的混合建模框架。
Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.

本文引用的文献

2
Network centrality in the human functional connectome.人类功能连接组中的网络中心性。
Cereb Cortex. 2012 Aug;22(8):1862-75. doi: 10.1093/cercor/bhr269. Epub 2011 Oct 2.
3
Exponential random graph modeling for complex brain networks.复杂脑网络的指数随机图模型。
PLoS One. 2011;6(5):e20039. doi: 10.1371/journal.pone.0020039. Epub 2011 May 25.
7
A new measure of centrality for brain networks.一种新的脑网络中心度度量。
PLoS One. 2010 Aug 16;5(8):e12200. doi: 10.1371/journal.pone.0012200.
10
Default network and intelligence difference.默认网络与智力差异。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2212-5. doi: 10.1109/IEMBS.2009.5334874.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验