Suppr超能文献

不随意的刻板抓握倾向普遍存在于主动动态多指操作中。

An involuntary stereotypical grasp tendency pervades voluntary dynamic multifinger manipulation.

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.

出版信息

J Neurophysiol. 2012 Dec;108(11):2896-911. doi: 10.1152/jn.00297.2012. Epub 2012 Sep 5.

Abstract

We used a novel apparatus with three hinged finger pads to characterize collaborative multifinger interactions during dynamic manipulation requiring individuated control of fingertip motions and forces. Subjects placed the thumb, index, and middle fingertips on each hinged finger pad and held it-unsupported-with constant total grasp force while voluntarily oscillating the thumb's pad. This task combines the need to 1) hold the object against gravity while 2) dynamically reconfiguring the grasp. Fingertip force variability in this combined motion and force task exhibited strong synchrony among normal (i.e., grasp) forces. Mechanical analysis and simulation show that such synchronous variability is unnecessary and cannot be explained solely by signal-dependent noise. Surprisingly, such variability also pervaded control tasks requiring different individuated fingertip motions and forces, but not tasks without finger individuation such as static grasp. These results critically extend notions of finger force variability by exposing and quantifying a pervasive challenge to dynamic multifinger manipulation: the need for the neural controller to carefully and continuously overlay individuated finger actions over mechanically unnecessary synchronous interactions. This is compatible with-and may explain-the phenomenology of strong coupling of hand muscles when this delicate balance is not yet developed, as in early childhood, or when disrupted, as in brain injury. We conclude that the control of healthy multifinger dynamic manipulation has barely enough neuromechanical degrees of freedom to meet the multiple demands of ecological tasks and critically depends on the continuous inhibition of synchronous grasp tendencies, which we speculate may be of vestigial evolutionary origin.

摘要

我们使用一种带有三个铰接指垫的新型装置来描述动态操作过程中协作的多指相互作用,这需要对指尖运动和力进行个体化控制。研究对象将拇指、食指和中指指尖放在每个铰接指垫上,并在自愿摆动拇指指垫的同时保持恒定的总抓握力。这个任务结合了以下需求:1)在重力作用下握持物体,2)动态重新配置抓握。在这种组合运动和力任务中,指尖力的可变性表现出正常(即抓握)力之间的强同步性。机械分析和模拟表明,这种同步可变性是不必要的,不能仅通过信号相关噪声来解释。令人惊讶的是,这种可变性也存在于需要不同个体化指尖运动和力的控制任务中,但不存在没有手指个体化的任务,例如静态抓握。这些结果通过暴露和量化动态多指操作面临的普遍挑战,对指尖力可变性的概念进行了重要扩展:即需要神经控制器仔细且持续地将个体化的手指动作叠加在机械上不必要的同步相互作用上。这与手部肌肉的强耦合现象是一致的,当这种微妙的平衡尚未发展时,例如在儿童早期,或者当平衡被破坏时,例如在脑损伤中。我们得出结论,健康的多指动态操作的控制几乎没有足够的神经机械自由度来满足生态任务的多种需求,并且严重依赖于对同步抓握趋势的持续抑制,我们推测这可能具有遗留的进化起源。

相似文献

1
An involuntary stereotypical grasp tendency pervades voluntary dynamic multifinger manipulation.
J Neurophysiol. 2012 Dec;108(11):2896-911. doi: 10.1152/jn.00297.2012. Epub 2012 Sep 5.
2
Control of fingertip forces in multidigit manipulation.
J Neurophysiol. 1999 Apr;81(4):1706-17. doi: 10.1152/jn.1999.81.4.1706.
3
Common input to motor units of digit flexors during multi-digit grasping.
J Neurophysiol. 2004 Dec;92(6):3210-20. doi: 10.1152/jn.00516.2004. Epub 2004 Jul 7.
4
Two virtual fingers in the control of the tripod grasp.
J Neurophysiol. 2001 Aug;86(2):604-15. doi: 10.1152/jn.2001.86.2.604.
5
Internal forces during object manipulation.
Exp Brain Res. 2005 Aug;165(1):69-83. doi: 10.1007/s00221-005-2282-1. Epub 2005 May 24.
6
Bilateral multifinger deficits in symmetric key-pressing tasks.
Exp Brain Res. 2001 Sep;140(1):86-94. doi: 10.1007/s002210100801.
8
Bilateral deficit and symmetry in finger force production during two-hand multifinger tasks.
Exp Brain Res. 2001 Dec;141(4):530-40. doi: 10.1007/s002210100893. Epub 2001 Oct 31.
9
Is the Control of Applied Digital Forces During Natural Five-digit Grasping Affected by Carpal Tunnel Syndrome?
Clin Orthop Relat Res. 2015 Jul;473(7):2371-82. doi: 10.1007/s11999-015-4189-x. Epub 2015 Feb 18.

引用本文的文献

1
Evolution, biomechanics, and neurobiology converge to explain selective finger motor control.
Physiol Rev. 2024 Jul 1;104(3):983-1020. doi: 10.1152/physrev.00030.2023. Epub 2024 Feb 22.
2
Neuromuscular control: from a biomechanist's perspective.
Front Sports Act Living. 2023 Jul 5;5:1217009. doi: 10.3389/fspor.2023.1217009. eCollection 2023.
3
Distinct adaptation processes underlie multidigit force coordination for dexterous manipulation.
J Neurophysiol. 2023 Feb 1;129(2):380-391. doi: 10.1152/jn.00329.2022. Epub 2023 Jan 11.
4
Unexpected complexity of everyday manual behaviors.
Nat Commun. 2020 Jul 16;11(1):3564. doi: 10.1038/s41467-020-17404-0.
5
Parkinson's Disease Exhibits Amplified Intermuscular Coherence During Dynamic Voluntary Action.
Front Neurol. 2020 Apr 3;11:204. doi: 10.3389/fneur.2020.00204. eCollection 2020.
6
Feasibility Theory Reconciles and Informs Alternative Approaches to Neuromuscular Control.
Front Comput Neurosci. 2018 Sep 11;12:62. doi: 10.3389/fncom.2018.00062. eCollection 2018.
7
Intermuscular coherence reflects functional coordination.
J Neurophysiol. 2017 Sep 1;118(3):1775-1783. doi: 10.1152/jn.00204.2017. Epub 2017 Jun 28.
8
Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.
Front Comput Neurosci. 2016 Feb 4;10:7. doi: 10.3389/fncom.2016.00007. eCollection 2016.
9
Feasible muscle activation ranges based on inverse dynamics analyses of human walking.
J Biomech. 2015 Sep 18;48(12):2990-7. doi: 10.1016/j.jbiomech.2015.07.037. Epub 2015 Aug 11.
10
Independent digit contributions to rotational manipulation in a three-digit pouring task requiring dynamic stability.
Exp Brain Res. 2015 Jul;233(7):2195-204. doi: 10.1007/s00221-015-4289-6. Epub 2015 May 1.

本文引用的文献

1
Challenges and new approaches to proving the existence of muscle synergies of neural origin.
PLoS Comput Biol. 2012;8(5):e1002434. doi: 10.1371/journal.pcbi.1002434. Epub 2012 May 3.
2
The primate reticulospinal tract, hand function and functional recovery.
J Physiol. 2011 Dec 1;589(Pt 23):5603-12. doi: 10.1113/jphysiol.2011.215160. Epub 2011 Aug 30.
3
Muscle redundancy does not imply robustness to muscle dysfunction.
J Biomech. 2011 Apr 29;44(7):1264-70. doi: 10.1016/j.jbiomech.2011.02.014. Epub 2011 Mar 21.
4
The case for and against muscle synergies.
Curr Opin Neurobiol. 2009 Dec;19(6):601-7. doi: 10.1016/j.conb.2009.09.002. Epub 2009 Oct 12.
6
Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract.
J Neurosci. 2009 Apr 15;29(15):4993-9. doi: 10.1523/JNEUROSCI.3720-08.2009.
7
Multi-finger prehension: control of a redundant mechanical system.
Adv Exp Med Biol. 2009;629:597-618. doi: 10.1007/978-0-387-77064-2_32.
8
Descending pathways in motor control.
Annu Rev Neurosci. 2008;31:195-218. doi: 10.1146/annurev.neuro.31.060407.125547.
9
Estimating effective degrees of freedom in motor systems.
IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):430-42. doi: 10.1109/TBME.2007.903712.
10
Neural control of motion-to-force transitions with the fingertip.
J Neurosci. 2008 Feb 6;28(6):1366-73. doi: 10.1523/JNEUROSCI.4993-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验