Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
J Neurophysiol. 2012 Dec;108(11):2896-911. doi: 10.1152/jn.00297.2012. Epub 2012 Sep 5.
We used a novel apparatus with three hinged finger pads to characterize collaborative multifinger interactions during dynamic manipulation requiring individuated control of fingertip motions and forces. Subjects placed the thumb, index, and middle fingertips on each hinged finger pad and held it-unsupported-with constant total grasp force while voluntarily oscillating the thumb's pad. This task combines the need to 1) hold the object against gravity while 2) dynamically reconfiguring the grasp. Fingertip force variability in this combined motion and force task exhibited strong synchrony among normal (i.e., grasp) forces. Mechanical analysis and simulation show that such synchronous variability is unnecessary and cannot be explained solely by signal-dependent noise. Surprisingly, such variability also pervaded control tasks requiring different individuated fingertip motions and forces, but not tasks without finger individuation such as static grasp. These results critically extend notions of finger force variability by exposing and quantifying a pervasive challenge to dynamic multifinger manipulation: the need for the neural controller to carefully and continuously overlay individuated finger actions over mechanically unnecessary synchronous interactions. This is compatible with-and may explain-the phenomenology of strong coupling of hand muscles when this delicate balance is not yet developed, as in early childhood, or when disrupted, as in brain injury. We conclude that the control of healthy multifinger dynamic manipulation has barely enough neuromechanical degrees of freedom to meet the multiple demands of ecological tasks and critically depends on the continuous inhibition of synchronous grasp tendencies, which we speculate may be of vestigial evolutionary origin.
我们使用一种带有三个铰接指垫的新型装置来描述动态操作过程中协作的多指相互作用,这需要对指尖运动和力进行个体化控制。研究对象将拇指、食指和中指指尖放在每个铰接指垫上,并在自愿摆动拇指指垫的同时保持恒定的总抓握力。这个任务结合了以下需求:1)在重力作用下握持物体,2)动态重新配置抓握。在这种组合运动和力任务中,指尖力的可变性表现出正常(即抓握)力之间的强同步性。机械分析和模拟表明,这种同步可变性是不必要的,不能仅通过信号相关噪声来解释。令人惊讶的是,这种可变性也存在于需要不同个体化指尖运动和力的控制任务中,但不存在没有手指个体化的任务,例如静态抓握。这些结果通过暴露和量化动态多指操作面临的普遍挑战,对指尖力可变性的概念进行了重要扩展:即需要神经控制器仔细且持续地将个体化的手指动作叠加在机械上不必要的同步相互作用上。这与手部肌肉的强耦合现象是一致的,当这种微妙的平衡尚未发展时,例如在儿童早期,或者当平衡被破坏时,例如在脑损伤中。我们得出结论,健康的多指动态操作的控制几乎没有足够的神经机械自由度来满足生态任务的多种需求,并且严重依赖于对同步抓握趋势的持续抑制,我们推测这可能具有遗留的进化起源。