Interdepartmental Program of Neuroscience, University of California, Los Angeles, California 90095, USA.
J Neurosci. 2012 Sep 5;32(36):12312-24. doi: 10.1523/JNEUROSCI.2796-12.2012.
Over 50% of multiple sclerosis (MS) patients experience cognitive deficits, and hippocampal-dependent memory impairment has been reported in >30% of these patients. While postmortem pathology studies and in vivo magnetic resonance imaging demonstrate that the hippocampus is targeted in MS, the neuropathology underlying hippocampal dysfunction remains unknown. Furthermore, there are no treatments available to date to effectively prevent neurodegeneration and associated cognitive dysfunction in MS. We have recently demonstrated that the hippocampus is also targeted in experimental autoimmune encephalomyelitis (EAE), the most widely used animal model of MS. The objective of this study was to assess whether a candidate treatment (testosterone) could prevent hippocampal synaptic dysfunction and underlying pathology when administered in either a preventative or a therapeutic (postdisease induction) manner. Electrophysiological studies revealed impairments in basal excitatory synaptic transmission that involved both AMPA receptor-mediated changes in synaptic currents, and faster decay rates of NMDA receptor-mediated currents in mice with EAE. Neuropathology revealed atrophy of the pyramidal and dendritic layers of hippocampal CA1, decreased presynaptic (Synapsin-1) and postsynaptic (postsynaptic density 95; PSD-95) staining, diffuse demyelination, and microglial activation. Testosterone treatment administered either before or after disease induction restores excitatory synaptic transmission as well as presynaptic and postsynaptic protein levels within the hippocampus. Furthermore, cross-modality correlations demonstrate that fluctuations in EPSPs are significantly correlated to changes in postsynaptic protein levels and suggest that PSD-95 is a neuropathological substrate to impaired synaptic transmission in the hippocampus during EAE. This is the first report demonstrating that testosterone is a viable therapeutic treatment option that can restore both hippocampal function and disease-associated pathology that occur during autoimmune disease.
超过 50%的多发性硬化症(MS)患者存在认知障碍,超过 30%的患者报告存在海马体依赖的记忆损伤。虽然尸检病理学研究和体内磁共振成像表明 MS 会影响海马体,但海马体功能障碍的神经病理学基础仍不清楚。此外,迄今为止,尚无有效的治疗方法可有效预防 MS 中的神经退行性变和相关认知功能障碍。我们最近的研究表明,实验性自身免疫性脑脊髓炎(EAE)也会影响海马体,EAE 是 MS 最广泛使用的动物模型。本研究的目的是评估候选治疗药物(睾酮)是否可以通过预防或治疗(疾病诱导后)的方式来预防海马体突触功能障碍和潜在的病理学改变。电生理学研究表明,EAE 小鼠的基础兴奋性突触传递受损,涉及 AMPA 受体介导的突触电流变化以及 NMDA 受体介导的电流更快衰减。神经病理学显示海马体 CA1 区的锥体和树突层萎缩,突触前(突触素-1)和突触后(突触后密度 95;PSD-95)染色减少,弥漫性脱髓鞘和小胶质细胞激活。在疾病诱导前或后给予睾酮治疗可恢复海马体中的兴奋性突触传递以及突触前和突触后蛋白水平。此外,跨模态相关性表明 EPSPs 的波动与突触后蛋白水平的变化显著相关,提示 PSD-95 是 EAE 期间海马体中受损突触传递的神经病理学基础。这是第一项表明睾酮是一种可行的治疗选择的研究,可恢复自身免疫性疾病期间发生的海马体功能和疾病相关病理学改变。