Suppr超能文献

突触前活性区蛋白 RIM1α 控制癫痫持续状态后的癫痫发生。

The presynaptic active zone protein RIM1α controls epileptogenesis following status epilepticus.

机构信息

Department of Neuropathology, University of Bonn, 53105 Bonn, Germany.

出版信息

J Neurosci. 2012 Sep 5;32(36):12384-95. doi: 10.1523/JNEUROSCI.0223-12.2012.

Abstract

To ensure operation of synaptic transmission within an appropriate dynamic range, neurons have evolved mechanisms of activity-dependent plasticity, including changes in presynaptic efficacy. The multidomain protein RIM1α is an integral component of the cytomatrix at the presynaptic active zone and has emerged as key mediator of presynaptically expressed forms of synaptic plasticity. We have therefore addressed the role of RIM1α in aberrant cellular plasticity and structural reorganization after an episode of synchronous neuronal activity pharmacologically induced in vivo [status epilepticus (SE)]. Post-SE, all animals developed spontaneous seizure events, but their frequency was dramatically increased in RIM1α-deficient mice (RIM1α(-/-)). We found that in wild-type mice (RIM1α(+/+)) SE caused an increase in paired-pulse facilitation in the CA1 region of the hippocampus to the level observed in RIM1α(-/-) mice before SE. In contrast, this form of short-term plasticity was not further enhanced in RIM1α-deficient mice after SE. Intriguingly, RIM1α(-/-) mice showed a unique pattern of selective hilar cell loss (i.e., endfolium sclerosis), which so far has not been observed in a genetic epilepsy animal model, as well as less severe astrogliosis and attenuated mossy fiber sprouting. These findings indicate that the decrease in release probability and altered short- and long-term plasticity as present in RIM1α(-/-) mice result in the formation of a hyperexcitable network but act in part neuroprotectively with regard to neuropathological alterations associated with epileptogenesis. In summary, our results suggest that presynaptic plasticity and proper function of RIM1α play an important part in a neuron's adaptive response to aberrant electrical activity.

摘要

为确保突触传递在适当的动态范围内运作,神经元已经进化出了依赖活动的可塑性机制,包括突触前效能的变化。多结构域蛋白 RIM1α 是突触前活性区细胞基质的组成部分,并且已经成为突触前表达形式的可塑性的关键介导者。因此,我们研究了 RIM1α 在体内药理学诱导的同步神经元活动后异常细胞可塑性和结构重排中的作用[癫痫持续状态(SE)]。SE 后,所有动物都出现了自发性癫痫发作,但在 RIM1α 缺陷型小鼠(RIM1α(-/-))中其频率显著增加。我们发现,在野生型小鼠(RIM1α(+/+))中,SE 导致海马 CA1 区的成对脉冲易化增加到 SE 前 RIM1α(-/-)小鼠观察到的水平。相比之下,这种形式的短期可塑性在 SE 后在 RIM1α 缺陷型小鼠中没有进一步增强。有趣的是,RIM1α(-/-)小鼠表现出独特的选择性颗粒细胞缺失模式(即,终板硬化),到目前为止,在遗传性癫痫动物模型中尚未观察到这种模式,同时星形胶质细胞增生较轻,苔藓纤维发芽减弱。这些发现表明,RIM1α(-/-)小鼠中存在的释放概率降低和改变的短期和长期可塑性导致兴奋性网络形成,但在与癫痫发生相关的神经病理学改变方面,部分起到神经保护作用。总之,我们的结果表明,突触前可塑性和 RIM1α 的适当功能在神经元对异常电活动的适应性反应中起着重要作用。

相似文献

引用本文的文献

本文引用的文献

2
Homeostatic synaptic plasticity: from single synapses to neural circuits.稳态突触可塑性:从单个突触到神经回路。
Curr Opin Neurobiol. 2012 Jun;22(3):516-21. doi: 10.1016/j.conb.2011.09.006. Epub 2011 Oct 7.
5
MicroRNA regulation of homeostatic synaptic plasticity.微小 RNA 对稳态突触可塑性的调节。
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11650-5. doi: 10.1073/pnas.1017576108. Epub 2011 Jun 22.
9
Unraveling mechanisms of homeostatic synaptic plasticity.解析平衡型突触可塑性的机制。
Neuron. 2010 May 13;66(3):337-51. doi: 10.1016/j.neuron.2010.04.028.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验