Suppr超能文献

大麦愈伤组织:谷物中淀粉生物工程的模式系统。

Barley callus: a model system for bioengineering of starch in cereals.

机构信息

Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Aarhus, Denmark.

出版信息

Plant Methods. 2012 Sep 7;8(1):36. doi: 10.1186/1746-4811-8-36.

Abstract

BACKGROUND

Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties. In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate genes in planta.

RESULTS

We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4% (w/w dw) starch granules, which we could modify by generating fully transgenic calli by Agrobacterium-transformation. A Green Fluorescent Protein reporter protein tag was used to identify and propagate only fully transgenic callus explants. Around 1 - 1.5 g dry weight of fully transgenic callus could be produced in 9 weeks. Callus starch granules were smaller than endosperm starch granules and contained less amylose. Similarly the expression profile of starch biosynthesis genes were slightly different in callus compared with developing endosperm.

CONCLUSIONS

In this study we have developed an easy and rapid in planta model system for starch bioengineering in cereals. We suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers.

摘要

背景

淀粉是人类营养的最重要热量来源,其大部分由谷物种植生产。淀粉也是一系列工业领域的可再生原料。通过化学修饰,可以引入新的物理化学性质。通过这种方式,淀粉可以适应各种特定的最终用途。重组 DNA 技术为淀粉工业加工提供了替代方案。可以操纵植物生物合成途径来设计具有新颖结构和改进技术性能的淀粉。将来,这可能会降低或消除工业修饰的经济和环境成本。最近,人们在阐明控制淀粉生物合成的遗传机制方面取得了许多进展。已经鉴定并克隆了许多参与多种生物体中复杂碳水化合物合成和修饰的基因。这些知识为遗传转化作物以生成新型淀粉基聚合物提出了许多策略和一系列候选基因。然而,谷物的转化是一个缓慢的过程,目前还没有易于使用的模型系统可用于在植物体内测试候选基因的效率。

结果

我们探索了使用来自不成熟胚胎的转基因大麦愈伤组织快速测试淀粉生物合成的转基因修饰策略的可能性。我们发现,这种愈伤组织含有 4%(w/w dw)的淀粉颗粒,我们可以通过农杆菌转化生成完全转基因愈伤组织来修饰。使用绿色荧光蛋白报告蛋白标签来鉴定和繁殖仅完全转基因的愈伤组织外植体。在 9 周内,可以生产约 1-1.5 克干重的完全转基因愈伤组织。愈伤组织淀粉颗粒比胚乳淀粉颗粒小,且直链淀粉含量较少。同样,与发育中的胚乳相比,淀粉生物合成基因的表达谱在愈伤组织中也略有不同。

结论

在这项研究中,我们开发了一种用于谷物淀粉生物工程的简单快速的体内模型系统。我们建议,该方法可作为快速筛选候选基因以生成改良淀粉或新型碳水化合物聚合物的高效模型系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8b/3479045/baa5e83353c0/1746-4811-8-36-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验