Suppr超能文献

使用纹理分析和支持向量机分类进行肺部感染的计算机辅助诊断。

Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification.

机构信息

Center for Infectious Disease Imaging (CIDI) and Department of Radiology and Image Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.

出版信息

Acad Radiol. 2011 Mar;18(3):306-14. doi: 10.1016/j.acra.2010.11.013.

Abstract

RATIONALE AND OBJECTIVES

The purpose of this study was to develop and test a computer-assisted detection method for the identification and measurement of pulmonary abnormalities on chest computed tomographic (CT) imaging in cases of infection, such as novel H1N1 influenza. The method developed could be a potentially useful tool for classifying and quantifying pulmonary infectious disease on CT imaging.

MATERIALS AND METHODS

Forty chest CT examinations were studied using texture analysis and support vector machine classification to differentiate normal from abnormal lung regions on CT imaging, including 10 patients with immunohistochemistry-proven infection, 10 normal controls, and 20 patients with fibrosis.

RESULTS

Statistically significant differences in the receiver-operating characteristic curves for detecting abnormal regions in H1N1 infection were obtained between normal lung and regions of fibrosis, with significant differences in texture features of different infections. These differences enabled the quantification of abnormal lung volumes on CT imaging.

CONCLUSION

Texture analysis and support vector machine classification can distinguish between areas of abnormality in acute infection and areas of chronic fibrosis, differentiate lesions having consolidative and ground-glass appearances, and quantify those texture features to increase the precision of CT scoring as a potential tool for measuring disease progression and severity.

摘要

背景与目的

本研究旨在开发并验证一种计算机辅助检测方法,用于识别和量化感染(如新型 H1N1 流感)患者胸部 CT 图像中的肺部异常。该方法有望成为一种在 CT 图像上对肺部传染性疾病进行分类和定量的有用工具。

材料与方法

对 40 例胸部 CT 检查进行了纹理分析和支持向量机分类,以区分 CT 图像上的正常和异常肺区,包括 10 例经免疫组化证实的感染患者、10 例正常对照和 20 例纤维化患者。

结果

在区分新型 H1N1 感染的正常肺区和纤维化区时,基于纹理分析和支持向量机分类的受试者工作特征曲线获得了统计学显著差异,不同感染的纹理特征也存在显著差异。这些差异使得能够对 CT 图像上的异常肺体积进行定量。

结论

纹理分析和支持向量机分类可以区分急性感染中的异常区和慢性纤维化区,区分实变和磨玻璃样病变,并量化这些纹理特征,从而提高 CT 评分的准确性,有望成为一种评估疾病进展和严重程度的工具。

相似文献

2
Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features.
Phys Med Biol. 2009 Nov 21;54(22):6881-99. doi: 10.1088/0031-9155/54/22/009. Epub 2009 Oct 28.
3
Image dissimilarity-based quantification of lung disease from CT.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):37-44. doi: 10.1007/978-3-642-15705-9_5.
5
Computer-assisted detection of infectious lung diseases: a review.
Comput Med Imaging Graph. 2012 Jan;36(1):72-84. doi: 10.1016/j.compmedimag.2011.06.002. Epub 2011 Jul 1.
6
The GGO lesions detected by computer-aided detection system on chest MDCT images.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1983-5. doi: 10.1109/IEMBS.2006.260234.
7
Multiscale lung texture signature learning using the Riesz transform.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):517-24. doi: 10.1007/978-3-642-33454-2_64.
9
Automatic detection and quantification of tree-in-bud (TIB) opacities from CT scans.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1620-32. doi: 10.1109/TBME.2012.2190984. Epub 2012 Mar 14.

引用本文的文献

1
Artificial intelligence in respiratory pandemics-ready for disease X? A scoping review.
Eur Radiol. 2025 Mar;35(3):1583-1593. doi: 10.1007/s00330-024-11183-8. Epub 2024 Nov 21.
2
Data-driven classification and explainable-AI in the field of lung imaging.
Front Big Data. 2024 Sep 19;7:1393758. doi: 10.3389/fdata.2024.1393758. eCollection 2024.
6
Automatic detection of pneumonia in chest X-ray images using textural features.
Comput Biol Med. 2022 Jun;145:105466. doi: 10.1016/j.compbiomed.2022.105466. Epub 2022 Mar 30.
7
How AI Can Help in the Diagnostic Dilemma of Pulmonary Nodules.
Cancers (Basel). 2022 Apr 6;14(7):1840. doi: 10.3390/cancers14071840.
8
Chest CT texture-based radiomics analysis in differentiating COVID-19 from other interstitial pneumonia.
Radiol Med. 2021 Nov;126(11):1415-1424. doi: 10.1007/s11547-021-01402-3. Epub 2021 Aug 4.
9
D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution.
Comput Biol Med. 2021 Aug;135:104526. doi: 10.1016/j.compbiomed.2021.104526. Epub 2021 Jun 2.

本文引用的文献

1
Computer-Aided Grading of Lymphangioleiomyomatosis (LAM) using HRCT.
Proc IAPR Int Conf Pattern Recogn. 2008 Jan 23;2008(8-11 Dec. 2008):1-4. doi: 10.1109/ICPR.2008.4760991.
3
Imaging findings in a fatal case of pandemic swine-origin influenza A (H1N1).
AJR Am J Roentgenol. 2009 Dec;193(6):1500-3. doi: 10.2214/AJR.09.3365.
4
Swine-origin influenza A (H1N1) viral infection: radiographic and CT findings.
AJR Am J Roentgenol. 2009 Dec;193(6):1494-9. doi: 10.2214/AJR.09.3625.
5
Chest radiographic and CT findings in novel swine-origin influenza A (H1N1) virus (S-OIV) infection.
AJR Am J Roentgenol. 2009 Dec;193(6):1488-93. doi: 10.2214/AJR.09.3599.
6
Automatic segmentation of pulmonary segments from volumetric chest CT scans.
IEEE Trans Med Imaging. 2009 Apr;28(4):621-30. doi: 10.1109/TMI.2008.2008968. Epub 2009 Feb 10.
8
The many faces of pulmonary nontuberculous mycobacterial infection.
AJR Am J Roentgenol. 2007 Jul;189(1):177-86. doi: 10.2214/AJR.07.2074.
9
What every radiologist should know about idiopathic interstitial pneumonias.
Radiographics. 2007 May-Jun;27(3):595-615. doi: 10.1148/rg.273065130.
10
Usual interstitial pneumonia and chronic idiopathic interstitial pneumonia: analysis of CT appearance in 92 patients.
Radiology. 2006 Oct;241(1):258-66. doi: 10.1148/radiol.2411050928. Epub 2006 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验