Suppr超能文献

利用弱标注 HRCT 肺图像进行自动肺气肿检测。

Automatic emphysema detection using weakly labeled HRCT lung images.

机构信息

Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

PLoS One. 2018 Oct 15;13(10):e0205397. doi: 10.1371/journal.pone.0205397. eCollection 2018.

Abstract

PURPOSE

A method for automatically quantifying emphysema regions using High-Resolution Computed Tomography (HRCT) scans of patients with chronic obstructive pulmonary disease (COPD) that does not require manually annotated scans for training is presented.

METHODS

HRCT scans of controls and of COPD patients with diverse disease severity are acquired at two different centers. Textural features from co-occurrence matrices and Gaussian filter banks are used to characterize the lung parenchyma in the scans. Two robust versions of multiple instance learning (MIL) classifiers that can handle weakly labeled data, miSVM and MILES, are investigated. Weak labels give information relative to the emphysema without indicating the location of the lesions. The classifiers are trained with the weak labels extracted from the forced expiratory volume in one minute (FEV1) and diffusing capacity of the lungs for carbon monoxide (DLCO). At test time, the classifiers output a patient label indicating overall COPD diagnosis and local labels indicating the presence of emphysema. The classifier performance is compared with manual annotations made by two radiologists, a classical density based method, and pulmonary function tests (PFTs).

RESULTS

The miSVM classifier performed better than MILES on both patient and emphysema classification. The classifier has a stronger correlation with PFT than the density based method, the percentage of emphysema in the intersection of annotations from both radiologists, and the percentage of emphysema annotated by one of the radiologists. The correlation between the classifier and the PFT is only outperformed by the second radiologist.

CONCLUSIONS

The presented method uses MIL classifiers to automatically identify emphysema regions in HRCT scans. Furthermore, this approach has been demonstrated to correlate better with DLCO than a classical density based method or a radiologist, which is known to be affected in emphysema. Therefore, it is relevant to facilitate assessment of emphysema and to reduce inter-observer variability.

摘要

目的

提出一种使用慢性阻塞性肺疾病(COPD)患者高分辨率计算机断层扫描(HRCT)扫描的自动量化肺气肿区域的方法,该方法不需要手动注释扫描进行训练。

方法

在两个不同的中心获取对照和不同严重程度 COPD 患者的 HRCT 扫描。使用共生矩阵和高斯滤波器组的纹理特征来描述扫描中的肺实质。研究了两种能够处理弱标记数据的稳健的多实例学习(MIL)分类器,miSVM 和 MILES。弱标签提供与肺气肿有关的信息,而不指示病变的位置。使用从一秒用力呼气量(FEV1)和一氧化碳弥散量(DLCO)中提取的弱标签训练分类器。在测试时,分类器输出一个指示总体 COPD 诊断的患者标签和一个指示肺气肿存在的局部标签。将分类器的性能与由两名放射科医生、一种基于密度的经典方法和肺功能测试(PFT)进行的手动注释进行比较。

结果

miSVM 分类器在患者和肺气肿分类方面的性能均优于 MILES。与基于密度的方法、两名放射科医生的注释交集处的肺气肿百分比以及一名放射科医生注释的肺气肿百分比相比,分类器与 PFT 的相关性更强。分类器与 PFT 的相关性仅优于第二名放射科医生。

结论

所提出的方法使用 MIL 分类器自动识别 HRCT 扫描中的肺气肿区域。此外,与基于密度的经典方法或放射科医生相比,该方法与 DLCO 的相关性更好,而放射科医生已知在肺气肿中受到影响。因此,有助于评估肺气肿并减少观察者间的变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce24/6188751/84cec47f9046/pone.0205397.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验