Suppr超能文献

一种单样本微阵列标准化方法,以促进个体化医疗工作流程。

A single-sample microarray normalization method to facilitate personalized-medicine workflows.

机构信息

Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112, USA.

出版信息

Genomics. 2012 Dec;100(6):337-44. doi: 10.1016/j.ygeno.2012.08.003. Epub 2012 Aug 19.

Abstract

Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform.

摘要

基因表达微阵列使研究人员能够以高通量的方式描述生物现象,但它们受到技术偏差和样本收集和处理过程中不可避免的变异的影响。归一化技术旨在纠正这些偏差。大多数现有方法需要将多个样本集中处理;因此,每个样本的输出都会受到其他共同处理的样本的影响。然而,在个性化医疗工作流程中,样本可能会陆续到达,因此对每个新到达的样本重新进行归一化是不切实际的。我们开发了单通道阵列归一化(SCAN),这是一种单样本技术,它对探针核苷酸组成对荧光强度的影响进行建模,并对其进行校正,从而显著提高单个样本内的信号噪声比,同时降低样本之间的变异。在各种基准比较中,我们表明 SCAN 的性能与竞争方法一样好或更好,但不依赖于外部参考样本,并且可以应用于任何单通道微阵列平台。

相似文献

1
A single-sample microarray normalization method to facilitate personalized-medicine workflows.
Genomics. 2012 Dec;100(6):337-44. doi: 10.1016/j.ygeno.2012.08.003. Epub 2012 Aug 19.
2
Subset quantile normalization using negative control features.
J Comput Biol. 2010 Oct;17(10):1385-95. doi: 10.1089/cmb.2010.0049.
3
A robust neural networks approach for spatial and intensity-dependent normalization of cDNA microarray data.
Bioinformatics. 2005 Jun 1;21(11):2674-83. doi: 10.1093/bioinformatics/bti397. Epub 2005 Mar 29.
5
Characterizing dye bias in microarray experiments.
Bioinformatics. 2005 May 15;21(10):2430-7. doi: 10.1093/bioinformatics/bti378. Epub 2005 Mar 17.
6
A measure of the signal-to-noise ratio of microarray samples and studies using gene correlations.
PLoS One. 2012;7(12):e51013. doi: 10.1371/journal.pone.0051013. Epub 2012 Dec 12.
7
Multiplatform single-sample estimates of transcriptional activation.
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17778-83. doi: 10.1073/pnas.1305823110. Epub 2013 Oct 15.
8
High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses.
BMC Bioinformatics. 2011 Oct 18;12 Suppl 10(Suppl 10):S2. doi: 10.1186/1471-2105-12-S10-S2.
9
New normalization methods for cDNA microarray data.
Bioinformatics. 2003 Jul 22;19(11):1325-32. doi: 10.1093/bioinformatics/btg146.
10
Can Zipf's law be adapted to normalize microarrays?
BMC Bioinformatics. 2005 Feb 23;6:37. doi: 10.1186/1471-2105-6-37.

引用本文的文献

2
5hmC-profiles in Puerto Rican Hispanic/Latino men with aggressive prostate cancer.
Front Oncol. 2025 Apr 8;15:1541878. doi: 10.3389/fonc.2025.1541878. eCollection 2025.
3
ACT2.6: Global Gene Coexpression Network in Using WGCNA.
Genes (Basel). 2025 Feb 23;16(3):258. doi: 10.3390/genes16030258.
5
Robust Cluster Prediction Across Data Types Validates Association of Sex and Therapy Response in GBM.
Cancers (Basel). 2025 Jan 28;17(3):445. doi: 10.3390/cancers17030445.
6
Prostate cancers with distinct transcriptional programs in Black and White men.
Genome Med. 2024 Jul 23;16(1):92. doi: 10.1186/s13073-024-01361-0.
7
A novel batch-effect correction method for scRNA-seq data based on Adversarial Information Factorization.
PLoS Comput Biol. 2024 Feb 22;20(2):e1011880. doi: 10.1371/journal.pcbi.1011880. eCollection 2024 Feb.
8
Gene expression meta-analysis reveals aging and cellular senescence signatures in scleroderma-associated interstitial lung disease.
Front Immunol. 2024 Jan 25;15:1326922. doi: 10.3389/fimmu.2024.1326922. eCollection 2024.
10
27-hydroxycholesterol and DNA damage repair: implication in prostate cancer.
Front Oncol. 2023 Dec 21;13:1251297. doi: 10.3389/fonc.2023.1251297. eCollection 2023.

本文引用的文献

1
Spatio-temporal transcriptome of the human brain.
Nature. 2011 Oct 26;478(7370):483-9. doi: 10.1038/nature10523.
2
A pharmacogenomic method for individualized prediction of drug sensitivity.
Mol Syst Biol. 2011 Jul 19;7:513. doi: 10.1038/msb.2011.47.
3
Integrated genomic analyses of ovarian carcinoma.
Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.
4
Genomics and the continuum of cancer care.
N Engl J Med. 2011 Jan 27;364(4):340-50. doi: 10.1056/NEJMra0907178.
5
NCBI GEO: archive for functional genomics data sets--10 years on.
Nucleic Acids Res. 2011 Jan;39(Database issue):D1005-10. doi: 10.1093/nar/gkq1184. Epub 2010 Nov 21.
6
Algorithm-driven artifacts in median polish summarization of microarray data.
BMC Bioinformatics. 2010 Nov 11;11:553. doi: 10.1186/1471-2105-11-553.
7
Tackling the widespread and critical impact of batch effects in high-throughput data.
Nat Rev Genet. 2010 Oct;11(10):733-9. doi: 10.1038/nrg2825. Epub 2010 Sep 14.
8
Molecular target class is predictive of in vitro response profile.
Cancer Res. 2010 May 1;70(9):3677-86. doi: 10.1158/0008-5472.CAN-09-3788. Epub 2010 Apr 20.
9
Frozen robust multiarray analysis (fRMA).
Biostatistics. 2010 Apr;11(2):242-53. doi: 10.1093/biostatistics/kxp059. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验