Suppr超能文献

眼科转录组学中的人工智能:无监督学习和监督学习的应用

Artificial Intelligence in Ocular Transcriptomics: Applications of Unsupervised and Supervised Learning.

作者信息

Lalman Catherine, Yang Yimin, Walker Janice L

机构信息

Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.

Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

Cells. 2025 Aug 26;14(17):1315. doi: 10.3390/cells14171315.

Abstract

Transcriptomic profiling is a powerful tool for dissecting the cellular and molecular complexity of ocular tissues, providing insights into retinal development, corneal disease, macular degeneration, and glaucoma. With the expansion of microarray, bulk RNA sequencing (RNA-seq), and single-cell RNA-seq technologies, artificial intelligence (AI) has emerged as a key strategy for analyzing high-dimensional gene expression data. This review synthesizes AI-enabled transcriptomic studies in ophthalmology from 2019 to 2025, highlighting how supervised and unsupervised machine learning (ML) methods have advanced biomarker discovery, cell type classification, and eye development and ocular disease modeling. Here, we discuss unsupervised techniques, such as principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), and weighted gene co-expression network analysis (WGCNA), now the standard in single-cell workflows. Supervised approaches are also discussed, including the least absolute shrinkage and selection operator (LASSO), support vector machines (SVMs), and random forests (RFs), and their utility in identifying diagnostic and prognostic markers in age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, keratoconus, thyroid eye disease, and posterior capsule opacification (PCO), as well as deep learning frameworks, such as variational autoencoders and neural networks that support multi-omics integration. Despite challenges in interpretability and standardization, explainable AI and multimodal approaches offer promising avenues for advancing precision ophthalmology.

摘要

转录组分析是剖析眼组织细胞和分子复杂性的有力工具,有助于深入了解视网膜发育、角膜疾病、黄斑变性和青光眼。随着微阵列、批量RNA测序(RNA-seq)和单细胞RNA-seq技术的发展,人工智能(AI)已成为分析高维基因表达数据的关键策略。本综述综合了2019年至2025年眼科领域基于人工智能的转录组学研究,重点介绍了监督式和非监督式机器学习(ML)方法如何推动生物标志物发现、细胞类型分类以及眼部发育和眼病建模。在此,我们讨论非监督式技术,如主成分分析(PCA)、t分布随机邻域嵌入(t-SNE)、均匀流形近似和投影(UMAP)以及加权基因共表达网络分析(WGCNA),这些现在是单细胞工作流程中的标准方法。我们还讨论了监督式方法,包括最小绝对收缩和选择算子(LASSO)、支持向量机(SVM)和随机森林(RF),以及它们在识别年龄相关性黄斑变性(AMD)、糖尿病视网膜病变(DR)、青光眼、圆锥角膜、甲状腺眼病和后囊混浊(PCO)的诊断和预后标志物方面的效用,以及深度学习框架,如支持多组学整合的变分自编码器和神经网络。尽管在可解释性和标准化方面存在挑战,但可解释人工智能和多模态方法为推进精准眼科提供了有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7325/12427629/7be6f4787693/cells-14-01315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验