Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France.
Nature. 2012 Oct 18;490(7420):431-4. doi: 10.1038/nature11430. Epub 2012 Sep 9.
Transcription-coupled DNA repair uses components of the transcription machinery to identify DNA lesions and initiate their repair. These repair pathways are complex, so their mechanistic features remain poorly understood. Bacterial transcription-coupled repair is initiated when RNA polymerase stalled at a DNA lesion is removed by Mfd, an ATP-dependent DNA translocase. Here we use single-molecule DNA nanomanipulation to observe the dynamic interactions of Escherichia coli Mfd with RNA polymerase elongation complexes stalled by a cyclopyrimidine dimer or by nucleotide starvation. We show that Mfd acts by catalysing two irreversible, ATP-dependent transitions with different structural, kinetic and mechanistic features. Mfd remains bound to the DNA in a long-lived complex that could act as a marker for sites of DNA damage, directing assembly of subsequent DNA repair factors. These results provide a framework for considering the kinetics of transcription-coupled repair in vivo, and open the way to reconstruction of complete DNA repair pathways at single-molecule resolution.
转录偶联 DNA 修复利用转录机制的组件来识别 DNA 损伤并启动修复。这些修复途径很复杂,因此其机制特征仍知之甚少。当 RNA 聚合酶在 DNA 损伤处停滞时,细菌转录偶联修复就会启动,此时 Mfd(一种依赖于 ATP 的 DNA 转位酶)会将其移除。在这里,我们使用单分子 DNA 纳米操作来观察大肠杆菌 Mfd 与 RNA 聚合酶延伸复合物的动态相互作用,这些复合物是由环嘧啶二聚体或核苷酸饥饿引起的。我们表明,Mfd 通过催化两个具有不同结构、动力学和机制特征的不可逆、依赖于 ATP 的转变来发挥作用。Mfd 仍然与 DNA 结合形成一个长寿命的复合物,该复合物可能作为 DNA 损伤部位的标记,指导随后的 DNA 修复因子的组装。这些结果为考虑体内转录偶联修复的动力学提供了一个框架,并为在单分子分辨率下重建完整的 DNA 修复途径开辟了道路。