Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan.
Nat Nanotechnol. 2012 Oct;7(10):651-6. doi: 10.1038/nnano.2012.145. Epub 2012 Sep 9.
Graphene nanoribbons combine the unique electronic and spin properties of graphene with a transport gap that arises from quantum confinement and edge effects. This makes them an attractive candidate material for the channels of next-generation transistors. Nanoribbons can be made in a variety of ways, including lithographic, chemical and sonochemical approaches, the unzipping of carbon nanotubes, the thermal decomposition of SiC and organic synthesis. However, the reliable site and alignment control of nanoribbons with high on/off current ratios remains a challenge. Here we control the site and alignment of narrow (∼23 nm) graphene nanoribbons by directly converting a nickel nanobar into a graphene nanoribbon using rapid-heating plasma chemical vapour deposition. The nanoribbons grow directly between the source and drain electrodes of a field-effect transistor without transfer, lithography and other postgrowth treatments, and exhibit a clear transport gap (58.5 meV), a high on/off ratio (>10(4)) and no hysteresis. Complex architectures, including parallel and radial arrays of supported and suspended ribbons, are demonstrated. The process is scalable and completely compatible with existing semiconductor processes, and is expected to allow integration of graphene nanoribbons with silicon technology.
石墨烯纳米带结合了石墨烯独特的电子和自旋性质,以及量子限制和边缘效应产生的传输间隙。这使它们成为下一代晶体管沟道的理想候选材料。纳米带可以通过多种方法制造,包括光刻、化学和超声化学方法、碳纳米管的解卷、碳化硅和有机合成的热分解。然而,具有高导通/关断电流比的纳米带的可靠位置和对准控制仍然是一个挑战。在这里,我们通过使用快速加热等离子体化学气相沉积,直接将镍纳米棒转化为石墨烯纳米带,从而控制了窄(约 23nm)石墨烯纳米带的位置和对准。纳米带在没有转移、光刻和其他后生长处理的情况下,直接在场效应晶体管的源极和漏极之间生长,并表现出明显的传输间隙(58.5meV)、高导通/关断比(>10^4)和无迟滞。展示了包括支撑和悬空带的并行和径向阵列在内的复杂结构。该工艺具有可扩展性,并且完全与现有半导体工艺兼容,有望实现与硅技术集成的石墨烯纳米带。