Suppr超能文献

一种从受精卵到囊胚期单细胞基因表达模式差异解析的新方法。

A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst.

机构信息

Institute of Bioinformatics and Systems Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany.

出版信息

Bioinformatics. 2012 Sep 15;28(18):i626-i632. doi: 10.1093/bioinformatics/bts385.

Abstract

MOTIVATION

Single-cell experiments of cells from the early mouse embryo yield gene expression data for different developmental stages from zygote to blastocyst. To better understand cell fate decisions during differentiation, it is desirable to analyse the high-dimensional gene expression data and assess differences in gene expression patterns between different developmental stages as well as within developmental stages. Conventional methods include univariate analyses of distributions of genes at different stages or multivariate linear methods such as principal component analysis (PCA). However, these approaches often fail to resolve important differences as each lineage has a unique gene expression pattern which changes gradually over time yielding different gene expressions both between different developmental stages as well as heterogeneous distributions at a specific stage. Furthermore, to date, no approach taking the temporal structure of the data into account has been presented.

RESULTS

We present a novel framework based on Gaussian process latent variable models (GPLVMs) to analyse single-cell qPCR expression data of 48 genes from mouse zygote to blastocyst as presented by (Guo et al., 2010). We extend GPLVMs by introducing gene relevance maps and gradient plots to provide interpretability as in the linear case. Furthermore, we take the temporal group structure of the data into account and introduce a new factor in the GPLVM likelihood which ensures that small distances are preserved for cells from the same developmental stage. Using our novel framework, it is possible to resolve differences in gene expressions for all developmental stages. Furthermore, a new subpopulation of cells within the 16-cell stage is identified which is significantly more trophectoderm-like than the rest of the population. The trophectoderm-like subpopulation was characterized by considerable differences in the expression of Id2, Gata4 and, to a smaller extent, Klf4 and Hand1. The relevance of Id2 as early markers for TE cells is consistent with previously published results.

AVAILABILITY

The mappings were implemented based on Prof. Neil Lawrence's FGPLVM toolbox(1); extensions for relevance analysis and including the structure of the data can be obtained from one of the authors' homepage.(2)

CONTACT

f.buettner@helmholtz-muenchen.de.

摘要

动机

从受精卵到囊胚的早期胚胎细胞的单细胞实验产生了不同发育阶段的基因表达数据。为了更好地理解分化过程中的细胞命运决定,分析高维基因表达数据并评估不同发育阶段以及同一发育阶段内的基因表达模式差异是很有必要的。传统方法包括对不同阶段的基因分布进行单变量分析,或者采用主成分分析(PCA)等多变量线性方法。然而,这些方法往往无法解析重要的差异,因为每个谱系都有独特的基因表达模式,随着时间的推移逐渐变化,导致不同发育阶段之间以及特定阶段的异质分布都有不同的基因表达。此外,到目前为止,还没有一种方法考虑到数据的时间结构。

结果

我们提出了一个基于高斯过程潜在变量模型(GPLVM)的新框架,以分析 Guo 等人(2010 年)提出的来自受精卵到囊胚的 48 个基因的单细胞 qPCR 表达数据。我们通过引入基因相关性图和梯度图来扩展 GPLVM,以提供与线性情况类似的可解释性。此外,我们考虑了数据的时间组结构,并在 GPLVM 似然中引入了一个新的因子,以确保同一发育阶段的细胞保持较小的距离。使用我们的新框架,可以解析所有发育阶段的基因表达差异。此外,在 16 细胞阶段内还确定了一个新的细胞亚群,其滋养外胚层样细胞的特征比其他细胞更为明显。滋养外胚层样细胞亚群在 Id2、Gata4 的表达以及在较小程度上 Klf4 和 Hand1 的表达上存在显著差异。Id2 作为 TE 细胞的早期标志物的相关性与之前发表的结果一致。

可用性

映射是基于 Neil Lawrence 教授的 FGPLVM 工具箱(1)实现的;相关性分析和包括数据结构的扩展可以从作者之一的主页获得(2)。

联系方式

f.buettner@helmholtz-muenchen.de

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/198c/3436812/fca948f9629c/bts385f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验