Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
EMBO J. 2019 Jan 3;38(1). doi: 10.15252/embj.201899518. Epub 2018 Sep 26.
An intricate link is becoming apparent between metabolism and cellular identities. Here, we explore the basis for such a link in an model for early mouse embryonic development: from naïve pluripotency to the specification of primordial germ cells (PGCs). Using single-cell RNA-seq with statistical modelling and modulation of energy metabolism, we demonstrate a functional role for oxidative mitochondrial metabolism in naïve pluripotency. We link mitochondrial tricarboxylic acid cycle activity to IDH2-mediated production of alpha-ketoglutarate and through it, the activity of key epigenetic regulators. Accordingly, this metabolite has a role in the maintenance of naïve pluripotency as well as in PGC differentiation, likely through preserving a particular histone methylation status underlying the transient state of developmental competence for the PGC fate. We reveal a link between energy metabolism and epigenetic control of cell state transitions during a developmental trajectory towards germ cell specification, and establish a paradigm for stabilizing fleeting cellular states through metabolic modulation.
代谢与细胞身份之间存在着复杂的联系。在这里,我们通过一种早期小鼠胚胎发育的模型来探讨这种联系的基础:从原始多能性到原始生殖细胞(PGC)的特化。我们使用单细胞 RNA-seq 结合统计建模和能量代谢的调节,证明了氧化线粒体代谢在原始多能性中的功能作用。我们将三羧酸循环活性与 IDH2 介导的α-酮戊二酸产生联系起来,并通过它与关键表观遗传调节剂的活性联系起来。因此,这种代谢物在维持原始多能性以及 PGC 分化中都发挥作用,可能是通过维持一种特定的组蛋白甲基化状态,这种状态是 PGC 命运的短暂发育能力的基础。我们揭示了在向生殖细胞特化的发育轨迹中,能量代谢和细胞状态转换的表观遗传控制之间的联系,并建立了通过代谢调节稳定短暂细胞状态的范例。