Suppr超能文献

刺激偏倚为 G 蛋白偶联受体结构中的构象约束提供了证据。

Stimulus bias provides evidence for conformational constraints in the structure of a G protein-coupled receptor.

机构信息

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Victoria 3800, Australia.

出版信息

J Biol Chem. 2012 Oct 26;287(44):37066-77. doi: 10.1074/jbc.M112.408534. Epub 2012 Sep 10.

Abstract

A key characteristic of G protein-coupled receptors (GPCRs) is that they activate a plethora of signaling pathways. It is now clear that a GPCR coupling to these pathways can be regulated selectively by ligands that differentially drive signaling down one pathway in preference to another. This concept, termed stimulus bias, is revolutionizing receptor biology and drug discovery by providing a means of selectively targeting receptor signaling pathways that have therapeutic impact. Herein, we utilized a novel quantitative method that determines stimulus bias of synthetic GPCR ligands in a manner that nullifies the impact of both the cellular background and the "natural bias" of the endogenous ligand. By applying this method to the M(2) muscarinic acetylcholine receptor, a prototypical GPCR, we found that mutation of key residues (Tyr-80(2.61) and Trp-99(3.28)) in an allosteric binding pocket introduces stimulus bias in response to the atypical ligands AC-42 (4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)piperidine HCl) and 77-LH-28-1 (1-(3-(4-butyl-1-piperidinyl)propyl)- 3,3-dihydro-2(1H)-quinolinone). By comparing stimulus bias factors among receptor internalization, G protein activation, extracellular-regulated protein kinase 1/2 (ERK1/2) signaling, and receptor phosphorylation, we provide evidence that Tyr-80(2.61) and Trp-99(3.28) act either as molecular switches or as gatekeeper residues that introduce constraints limiting the active conformation of the M(2) muscarinic acetylcholine receptor and thereby regulate stimulus bias. Furthermore, we provide evidence that downstream signaling pathways previously considered to be related to each other (i.e. receptor phosphorylation, internalization, and activation of ERK1/2) can act independently.

摘要

G 蛋白偶联受体 (GPCRs) 的一个关键特征是它们能够激活大量的信号通路。现在已经很清楚,配体可以选择性地调节这些通路与 GPCR 的偶联,从而优先驱动信号传递到一条通路而不是另一条通路。这种被称为刺激偏向的概念,通过提供一种选择性靶向具有治疗影响的受体信号通路的方法,正在彻底改变受体生物学和药物发现。在此,我们利用一种新的定量方法,以一种消除细胞背景和内源性配体“天然偏向”影响的方式,确定了合成 GPCR 配体的刺激偏向。通过将这种方法应用于 M2 毒蕈碱乙酰胆碱受体,一种典型的 GPCR,我们发现,在变构结合口袋中的关键残基 (Tyr-80(2.61) 和 Trp-99(3.28)) 突变后,会导致对非典型配体 AC-42(4-正丁基-1-(4-(2-甲基苯基)-4-氧代-1-丁基)哌啶盐酸盐)和 77-LH-28-1(1-(3-(4-正丁基-1-哌啶基)丙基)-3,3-二氢-2(1H)-喹啉酮)的刺激偏向。通过比较受体内化、G 蛋白激活、细胞外调节蛋白激酶 1/2(ERK1/2)信号和受体磷酸化之间的刺激偏向因子,我们提供了证据表明 Tyr-80(2.61)和 Trp-99(3.28) 作为分子开关或作为门控残基起作用,这些残基引入了限制 M2 毒蕈碱乙酰胆碱受体的活性构象的限制,并由此调节刺激偏向。此外,我们提供了证据表明,先前被认为相互关联的下游信号通路(即受体磷酸化、内化和 ERK1/2 的激活)可以独立发挥作用。

相似文献

1
Stimulus bias provides evidence for conformational constraints in the structure of a G protein-coupled receptor.
J Biol Chem. 2012 Oct 26;287(44):37066-77. doi: 10.1074/jbc.M112.408534. Epub 2012 Sep 10.
3
Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors.
Mol Pharmacol. 2007 Aug;72(2):463-76. doi: 10.1124/mol.107.037630. Epub 2007 May 24.
4
Contrasting effects of allosteric and orthosteric agonists on m1 muscarinic acetylcholine receptor internalization and down-regulation.
J Pharmacol Exp Ther. 2009 Dec;331(3):1086-95. doi: 10.1124/jpet.109.160242. Epub 2009 Sep 18.
5
G protein coupling and signaling pathway activation by m1 muscarinic acetylcholine receptor orthosteric and allosteric agonists.
J Pharmacol Exp Ther. 2008 Nov;327(2):365-74. doi: 10.1124/jpet.108.141788. Epub 2008 Jul 29.
6
Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor.
Mol Pharmacol. 2010 Jul;78(1):94-104. doi: 10.1124/mol.110.064345. Epub 2010 Apr 22.
7
Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding.
J Physiol. 2011 Apr 1;589(Pt 7):1741-53. doi: 10.1113/jphysiol.2010.204107. Epub 2011 Jan 31.
8
New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo.
Biochem Pharmacol. 2014 Aug 1;90(3):307-19. doi: 10.1016/j.bcp.2014.05.012. Epub 2014 May 23.
10
Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by NMR Spectroscopy.
Mol Cell. 2019 Jul 11;75(1):53-65.e7. doi: 10.1016/j.molcel.2019.04.028. Epub 2019 May 15.

引用本文的文献

2
Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region.
Cell Mol Neurobiol. 2022 Jan;42(1):59-83. doi: 10.1007/s10571-020-00997-x. Epub 2020 Nov 24.
3
Biased agonists at the human Y receptor lead to prolonged membrane residency and extended receptor G protein interaction.
Cell Mol Life Sci. 2020 Nov;77(22):4675-4691. doi: 10.1007/s00018-019-03432-7. Epub 2020 Jan 9.
4
Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications.
Front Pharmacol. 2019 Oct 28;10:1282. doi: 10.3389/fphar.2019.01282. eCollection 2019.
6
Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor.
J Biol Chem. 2014 Aug 22;289(34):23817-37. doi: 10.1074/jbc.M114.582874. Epub 2014 Jul 8.
7
Recent developments in biased agonism.
Curr Opin Cell Biol. 2014 Apr;27:18-24. doi: 10.1016/j.ceb.2013.10.008. Epub 2013 Nov 20.
8
Endocytic profiles of δ-opioid receptor ligands determine the duration of rapid but not sustained cAMP responses.
Mol Pharmacol. 2014 Jan;85(1):148-61. doi: 10.1124/mol.113.089003. Epub 2013 Oct 30.

本文引用的文献

1
A simple method for quantifying functional selectivity and agonist bias.
ACS Chem Neurosci. 2012 Mar 21;3(3):193-203. doi: 10.1021/cn200111m. Epub 2011 Dec 20.
2
Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors.
Annu Rev Pharmacol Toxicol. 2012;52:179-97. doi: 10.1146/annurev.pharmtox.010909.105800. Epub 2011 Sep 19.
3
β-Arrestin-mediated receptor trafficking and signal transduction.
Trends Pharmacol Sci. 2011 Sep;32(9):521-33. doi: 10.1016/j.tips.2011.05.002. Epub 2011 Jun 15.
4
Quantifying ligand bias at seven-transmembrane receptors.
Mol Pharmacol. 2011 Sep;80(3):367-77. doi: 10.1124/mol.111.072801. Epub 2011 May 24.
5
'Biasing' the parathyroid hormone receptor: a novel anabolic approach to increasing bone mass?
Br J Pharmacol. 2011 Sep;164(1):59-67. doi: 10.1111/j.1476-5381.2011.01450.x.
6
Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins.
Mol Pharmacol. 2011 Apr;79(4):749-57. doi: 10.1124/mol.110.068395. Epub 2010 Dec 6.
7
Quantification of functional selectivity at the human α(1A)-adrenoceptor.
Mol Pharmacol. 2011 Feb;79(2):298-307. doi: 10.1124/mol.110.067454. Epub 2010 Oct 26.
8
Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance.
J Pharmacol Exp Ther. 2010 Dec;335(3):572-9. doi: 10.1124/jpet.110.173005. Epub 2010 Aug 26.
10
Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor.
Mol Pharmacol. 2010 Jul;78(1):94-104. doi: 10.1124/mol.110.064345. Epub 2010 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验