Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Victoria 3800, Australia.
J Biol Chem. 2012 Oct 26;287(44):37066-77. doi: 10.1074/jbc.M112.408534. Epub 2012 Sep 10.
A key characteristic of G protein-coupled receptors (GPCRs) is that they activate a plethora of signaling pathways. It is now clear that a GPCR coupling to these pathways can be regulated selectively by ligands that differentially drive signaling down one pathway in preference to another. This concept, termed stimulus bias, is revolutionizing receptor biology and drug discovery by providing a means of selectively targeting receptor signaling pathways that have therapeutic impact. Herein, we utilized a novel quantitative method that determines stimulus bias of synthetic GPCR ligands in a manner that nullifies the impact of both the cellular background and the "natural bias" of the endogenous ligand. By applying this method to the M(2) muscarinic acetylcholine receptor, a prototypical GPCR, we found that mutation of key residues (Tyr-80(2.61) and Trp-99(3.28)) in an allosteric binding pocket introduces stimulus bias in response to the atypical ligands AC-42 (4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)piperidine HCl) and 77-LH-28-1 (1-(3-(4-butyl-1-piperidinyl)propyl)- 3,3-dihydro-2(1H)-quinolinone). By comparing stimulus bias factors among receptor internalization, G protein activation, extracellular-regulated protein kinase 1/2 (ERK1/2) signaling, and receptor phosphorylation, we provide evidence that Tyr-80(2.61) and Trp-99(3.28) act either as molecular switches or as gatekeeper residues that introduce constraints limiting the active conformation of the M(2) muscarinic acetylcholine receptor and thereby regulate stimulus bias. Furthermore, we provide evidence that downstream signaling pathways previously considered to be related to each other (i.e. receptor phosphorylation, internalization, and activation of ERK1/2) can act independently.
G 蛋白偶联受体 (GPCRs) 的一个关键特征是它们能够激活大量的信号通路。现在已经很清楚,配体可以选择性地调节这些通路与 GPCR 的偶联,从而优先驱动信号传递到一条通路而不是另一条通路。这种被称为刺激偏向的概念,通过提供一种选择性靶向具有治疗影响的受体信号通路的方法,正在彻底改变受体生物学和药物发现。在此,我们利用一种新的定量方法,以一种消除细胞背景和内源性配体“天然偏向”影响的方式,确定了合成 GPCR 配体的刺激偏向。通过将这种方法应用于 M2 毒蕈碱乙酰胆碱受体,一种典型的 GPCR,我们发现,在变构结合口袋中的关键残基 (Tyr-80(2.61) 和 Trp-99(3.28)) 突变后,会导致对非典型配体 AC-42(4-正丁基-1-(4-(2-甲基苯基)-4-氧代-1-丁基)哌啶盐酸盐)和 77-LH-28-1(1-(3-(4-正丁基-1-哌啶基)丙基)-3,3-二氢-2(1H)-喹啉酮)的刺激偏向。通过比较受体内化、G 蛋白激活、细胞外调节蛋白激酶 1/2(ERK1/2)信号和受体磷酸化之间的刺激偏向因子,我们提供了证据表明 Tyr-80(2.61)和 Trp-99(3.28) 作为分子开关或作为门控残基起作用,这些残基引入了限制 M2 毒蕈碱乙酰胆碱受体的活性构象的限制,并由此调节刺激偏向。此外,我们提供了证据表明,先前被认为相互关联的下游信号通路(即受体磷酸化、内化和 ERK1/2 的激活)可以独立发挥作用。