Berlett B S, Chock P B, Yim M B, Stadtman E R
Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 1990 Jan;87(1):389-93. doi: 10.1073/pnas.87.1.389.
In bicarbonate/CO2 buffer, Mn(II) and Fe(II) catalyze the oxidation of amino acids by H2O2 and the dismutation of H2O2. As the Mn(II)/Fe(II) ratio is increased, the yield of carbonyl compounds per mole of leucine oxidized is essentially constant, but the ratio of alpha-ketoisocaproate to isovaleraldehyde formed increases, and the fraction of H2O2 converted to O2 increases. In the absence of Fe(II), the rate of Mn(II)-catalyzed leucine oxidation is directly proportional to the H2O2, Mn(II), and amino acid concentrations and is proportional to the square of the HCO3- concentration. The rate of Mn(II)-catalyzed O2 production in the presence of 50 mM alanine or leucine is about 4-fold the rate observed in the absence of amino acids and accounts for about half of the H2O2 consumed; the other half of the H2O2 is consumed in the oxidation of the amino acids. In contrast, O2 production is increased nearly 18-fold by the presence of alpha-methylalanine and accounts for about 90% of the H2O2 consumed. The data are consistent with the view that H2O2 decomposition is an inner sphere (cage-like) process catalyzed by a Mn coordination complex of the composition Mn(II), amino acid, (HCO3-)2. Oxidation of the amino acid in this complex most likely proceeds by a free radical mechanism involving hydrogen abstraction from the alpha-carbon as a critical step. The results demonstrate that at physiological concentrations of HCO3- and CO2, Mn(II) is able to facilitate Fenton-type reactions.
在碳酸氢盐/二氧化碳缓冲液中,锰(II)和铁(II)催化过氧化氢氧化氨基酸以及过氧化氢的歧化反应。随着锰(II)/铁(II)比例的增加,每摩尔被氧化的亮氨酸生成的羰基化合物产量基本恒定,但生成的α-酮异己酸与异戊醛的比例增加,并且转化为氧气的过氧化氢比例增加。在没有铁(II)的情况下,锰(II)催化的亮氨酸氧化速率与过氧化氢、锰(II)和氨基酸浓度成正比,并且与碳酸氢根离子浓度的平方成正比。在存在50 mM丙氨酸或亮氨酸的情况下,锰(II)催化产生氧气的速率约为不存在氨基酸时观察到的速率的4倍,约占消耗的过氧化氢的一半;另一半过氧化氢用于氨基酸的氧化。相比之下,α-甲基丙氨酸的存在使氧气产生增加了近18倍,约占消耗的过氧化氢的90%。这些数据与以下观点一致,即过氧化氢分解是由组成为锰(II)、氨基酸、(碳酸氢根)2的锰配位络合物催化的内球(笼状)过程。该络合物中氨基酸的氧化很可能通过自由基机制进行,其中从α-碳上夺取氢是关键步骤。结果表明,在生理浓度的碳酸氢根离子和二氧化碳下,锰(II)能够促进类芬顿反应。