Suppr超能文献

锰(II)催化过氧化氢在碳酸氢盐存在下对氨基酸的氧化作用以及氨基酸促进的过氧化氢歧化反应。

Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide.

作者信息

Berlett B S, Chock P B, Yim M B, Stadtman E R

机构信息

Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892.

出版信息

Proc Natl Acad Sci U S A. 1990 Jan;87(1):389-93. doi: 10.1073/pnas.87.1.389.

Abstract

In bicarbonate/CO2 buffer, Mn(II) and Fe(II) catalyze the oxidation of amino acids by H2O2 and the dismutation of H2O2. As the Mn(II)/Fe(II) ratio is increased, the yield of carbonyl compounds per mole of leucine oxidized is essentially constant, but the ratio of alpha-ketoisocaproate to isovaleraldehyde formed increases, and the fraction of H2O2 converted to O2 increases. In the absence of Fe(II), the rate of Mn(II)-catalyzed leucine oxidation is directly proportional to the H2O2, Mn(II), and amino acid concentrations and is proportional to the square of the HCO3- concentration. The rate of Mn(II)-catalyzed O2 production in the presence of 50 mM alanine or leucine is about 4-fold the rate observed in the absence of amino acids and accounts for about half of the H2O2 consumed; the other half of the H2O2 is consumed in the oxidation of the amino acids. In contrast, O2 production is increased nearly 18-fold by the presence of alpha-methylalanine and accounts for about 90% of the H2O2 consumed. The data are consistent with the view that H2O2 decomposition is an inner sphere (cage-like) process catalyzed by a Mn coordination complex of the composition Mn(II), amino acid, (HCO3-)2. Oxidation of the amino acid in this complex most likely proceeds by a free radical mechanism involving hydrogen abstraction from the alpha-carbon as a critical step. The results demonstrate that at physiological concentrations of HCO3- and CO2, Mn(II) is able to facilitate Fenton-type reactions.

摘要

在碳酸氢盐/二氧化碳缓冲液中,锰(II)和铁(II)催化过氧化氢氧化氨基酸以及过氧化氢的歧化反应。随着锰(II)/铁(II)比例的增加,每摩尔被氧化的亮氨酸生成的羰基化合物产量基本恒定,但生成的α-酮异己酸与异戊醛的比例增加,并且转化为氧气的过氧化氢比例增加。在没有铁(II)的情况下,锰(II)催化的亮氨酸氧化速率与过氧化氢、锰(II)和氨基酸浓度成正比,并且与碳酸氢根离子浓度的平方成正比。在存在50 mM丙氨酸或亮氨酸的情况下,锰(II)催化产生氧气的速率约为不存在氨基酸时观察到的速率的4倍,约占消耗的过氧化氢的一半;另一半过氧化氢用于氨基酸的氧化。相比之下,α-甲基丙氨酸的存在使氧气产生增加了近18倍,约占消耗的过氧化氢的90%。这些数据与以下观点一致,即过氧化氢分解是由组成为锰(II)、氨基酸、(碳酸氢根)2的锰配位络合物催化的内球(笼状)过程。该络合物中氨基酸的氧化很可能通过自由基机制进行,其中从α-碳上夺取氢是关键步骤。结果表明,在生理浓度的碳酸氢根离子和二氧化碳下,锰(II)能够促进类芬顿反应。

相似文献

引用本文的文献

4
6
Sulfur and Phosphorus Oxyacid Radicals.硫磷含氧酸自由基。
J Phys Chem A. 2022 Feb 10;126(5):760-771. doi: 10.1021/acs.jpca.1c10455. Epub 2022 Jan 27.
7
Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2.锌载体 PBT2 的多种杀菌机制。
mSphere. 2020 Mar 18;5(2):e00157-20. doi: 10.1128/mSphere.00157-20.
8
On the incompatibility of lithium-O battery technology with CO.关于锂氧电池技术与一氧化碳的不相容性
Chem Sci. 2017 Sep 1;8(9):6117-6122. doi: 10.1039/c7sc01230f. Epub 2017 Jun 20.
9
Microbial radiation-resistance mechanisms.微生物的抗辐射机制。
J Microbiol. 2017 Jul;55(7):499-507. doi: 10.1007/s12275-017-7242-5. Epub 2017 Jun 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验