Stadtman E R, Berlett B S, Chock P B
Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 1990 Jan;87(1):384-8. doi: 10.1073/pnas.87.1.384.
At physiological concentrations of HCO3- and CO2, Mn(II) catalyzes disproportionation of H2O2. This catalase-like activity is directly proportional to the concentrations of Mn(II) and H2O2, and it increases exponentially with increases in pH. The effect of increasing pH is almost completely attributable to the concomitant increase in HCO3- concentration. The rate is proportional to the third power of the HCO3- concentration, suggesting that 3 equivalents of HCO3- combine with 1 equivalent of Mn(II) to form the catalytic complex. It is presumed that the redox potential of the Mn(II) in equilibrium with Mn(III) couple in such a complex permits H2O2 to carry out facile reactions with Mn(II) comparable to those that occur with Fe(III) and Cu(II) chelate complexes, in which OH. and O2-. are established intermediates. The Mn-catalyzed disproportionation of H2O2 does not occur at physiological pH in the absence of HCO3-. Hepes, inorganic phosphate, and inorganic pyrophosphate inhibit the reaction catalyzed by the Mn/HCO3- system. These results are similar to those of Sychev et al. [Sychev, A.Y., Pfannmeller, U. & Isak, V.G. (1983) Russ. J. Phys. Chem. 57, 1690-1693]. The catalase-like activity of Mn(II)-bicarbonate complexes reported here, together with the superoxide dismutase activity of Mn complexes demonstrated by Archibald and Fridovich [Archibald, F.S. & Fridovich, I. (1982) Arch. Biochem. Biophys. 214, 452-463], strengthen the proposition that Mn may play an important role in the protection of cells against oxygen radical-mediated damage.
在生理浓度的HCO₃⁻和CO₂条件下,Mn(II)催化H₂O₂的歧化反应。这种类似过氧化氢酶的活性与Mn(II)和H₂O₂的浓度成正比,并且随着pH值的升高呈指数增加。pH值升高的影响几乎完全归因于HCO₃⁻浓度的相应增加。反应速率与HCO₃⁻浓度的三次方成正比,这表明3当量的HCO₃⁻与1当量的Mn(II)结合形成催化复合物。据推测,在这种复合物中与Mn(III)处于平衡状态的Mn(II)的氧化还原电位使得H₂O₂能够与Mn(II)进行类似于与Fe(III)和Cu(II)螯合复合物发生的反应,其中OH·和O₂⁻是既定的中间体。在没有HCO₃⁻的情况下,Mn催化的H₂O₂歧化反应在生理pH值下不会发生。Hepes、无机磷酸盐和无机焦磷酸盐会抑制Mn/HCO₃⁻系统催化的反应。这些结果与Sychev等人的结果相似[Sychev, A.Y., Pfannmeller, U. & Isak, V.G. (1983) Russ. J. Phys. Chem. 57, 1690 - 1693]。本文报道的Mn(II)-碳酸氢盐复合物的类似过氧化氢酶的活性,以及Archibald和Fridovich所证明的Mn复合物的超氧化物歧化酶活性[Archibald, F.S. & Fridovich, I. (1982) Arch. Biochem. Biophys. 214, 452 - 463],强化了Mn可能在保护细胞免受氧自由基介导的损伤中起重要作用这一观点。