Departamento de Oceanografía, Universidad de Concepción, Concepción 4070386, Chile.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):15996-6003. doi: 10.1073/pnas.1205009109. Epub 2012 Sep 11.
Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous oxide (N(2)O) gases. Anaerobic microbial processes, including the two pathways of N(2) production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.
广阔的缺氧和亚硝酸盐丰富的水域界定了全球海洋中的主要缺氧区 (OMZs)。它们支持着多样化的微生物群落,这些群落影响着海洋的氮素经济,导致大量固定氮以氮气 (N(2)) 和氧化亚氮 (N(2)O) 气体的形式损失。包括反硝化和厌氧氨氧化两种 N(2) 产生途径在内的厌氧微生物过程对氧气敏感,有些过程仅在严格缺氧条件下发生。然而,测量海水中溶解氧的常用方法(Winkler 滴定法)的检测限太高,无法区分低氧条件和真正的缺氧。但是,新的分析技术正在揭示富含亚硝酸盐的 OMZs 中几乎不存在氧气的浓度,这表明这些 OMZs 实际上是无氧海洋区 (AMZs)。自主监测平台还揭示了以前未被识别的氧气周期性侵入 AMZ 核心的情况,这可能会周期性地支持在典型缺氧环境中的好氧代谢。尽管氮循环被认为主导着 AMZs 的微生物生态学和地球化学,但最近的环境基因组学和地球化学研究表明,存在其他相关过程,特别是与硫和碳循环相关的过程。AMZs 对应于两个“端点”之间的中间状态,这两个“端点”分别由完全有氧系统和完全硫化物系统表示。现代和古代的 AMZs 和硫化物盆地在化学和功能上是相关的。全球变化正在影响生物地球化学通量和海洋化学库存的规模,导致 AMZ 化学和生物学的变化,这些变化很可能在未来继续下去。