Suppr超能文献

基于 ADMM 的块稀疏贝叶斯学习的可穿戴式 ECG 远程监护的快速鲁棒非稀疏信号恢复算法。

A Fast and Robust Non-Sparse Signal Recovery Algorithm for Wearable ECG Telemonitoring Using ADMM-Based Block Sparse Bayesian Learning.

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Sensors (Basel). 2018 Jun 23;18(7):2021. doi: 10.3390/s18072021.

Abstract

Wearable telemonitoring of electrocardiogram (ECG) based on wireless body Area networks (WBAN) is a promising approach in next-generation patient-centric telecardiology solutions. In order to guarantee long-term effective operation of monitoring systems, the power consumption of the sensors must be strictly limited. Compressed sensing (CS) is an effective method to alleviate this problem. However, ECG signals in WBAN are usually non-sparse, and most traditional compressed sensing recovery algorithms have difficulty recovering non-sparse signals. In this paper, we proposed a fast and robust non-sparse signal recovery algorithm for wearable ECG telemonitoring. In the proposed algorithm, the alternating direction method of multipliers (ADMM) is used to accelerate the speed of block sparse Bayesian learning (BSBL) framework. We used the famous MIT-BIH Arrhythmia Database, MIT-BIH Long-Term ECG Database and ECG datasets collected in our practical wearable ECG telemonitoring system to verify the performance of the proposed algorithm. The experimental results show that the proposed algorithm can directly recover ECG signals with a satisfactory accuracy in a time domain without a dictionary matrix. Due to acceleration by ADMM, the proposed algorithm has a fast speed, and also it is robust for different ECG datasets. These results suggest that the proposed algorithm is very promising for wearable ECG telemonitoring.

摘要

基于无线体域网(WBAN)的可穿戴心电图(ECG)远程监护是下一代以患者为中心的远程心脏病学解决方案中很有前途的方法。为了保证监测系统的长期有效运行,传感器的功耗必须严格限制。压缩感知(CS)是缓解这一问题的有效方法。然而,WBAN 中的 ECG 信号通常是非稀疏的,大多数传统的压缩感知恢复算法难以恢复非稀疏信号。在本文中,我们提出了一种用于可穿戴 ECG 远程监护的快速稳健的非稀疏信号恢复算法。在提出的算法中,使用交替方向乘子法(ADMM)来加速块稀疏贝叶斯学习(BSBL)框架的速度。我们使用著名的麻省理工学院-贝斯以色列医院心律失常数据库、麻省理工学院-贝斯以色列医院长期 ECG 数据库和我们实际的可穿戴 ECG 远程监护系统中收集的 ECG 数据集来验证所提出算法的性能。实验结果表明,所提出的算法可以直接在时域中以令人满意的精度恢复 ECG 信号,而无需字典矩阵。由于 ADMM 的加速,所提出的算法速度很快,并且对不同的 ECG 数据集也具有鲁棒性。这些结果表明,所提出的算法非常适合可穿戴 ECG 远程监护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1694/6069014/3ca1d81205fb/sensors-18-02021-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验