Suppr超能文献

基于最小相干感知和加权 l1 最小化重建的无线生物传感器的能量高效 ECG 压缩。

Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

出版信息

IEEE J Biomed Health Inform. 2015 Mar;19(2):520-8. doi: 10.1109/JBHI.2014.2312374.

Abstract

Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

摘要

低能耗对于体域网(BAN)至关重要。在启用 BAN 的 ECG 监测中,连续监测需要传感器节点将大量数据传输到汇聚节点,这导致了能耗的过度消耗。为了减少能源密集型无线链路的空中时间,本文提出了一种基于能量有效的压缩感知(CS)的节点内 ECG 压缩方法。首先,提出了一种称为最小互相关追踪的算法来构建稀疏二进制测量矩阵,该矩阵可以用于以优异的性能和极低的复杂度对 ECG 信号进行编码。其次,为了最小化忠实重建所需的数据率,通过探索小波域中的多源先验知识,导出了加权 ℓ1 最小化模型。在 MIT-BIH 心律失常数据库上的实验结果表明,与现有的基于 CS 的方法相比,所提出的方法可以获得更高的压缩比。结合其低编码复杂度,我们的方法可以在编码过程和无线传输中实现显著的节能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验