Suppr超能文献

基于独立成分分析结合偏最小二乘法和人工神经网络的电子鼻用于葡萄酒预测。

Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction.

机构信息

Sensory Systems Research Group, University of Extremadura, 06006 Badajoz, Spain.

出版信息

Sensors (Basel). 2012;12(6):8055-72. doi: 10.3390/s120608055. Epub 2012 Jun 11.

Abstract

The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Neural Networks (ANNs) for classification purpose. A total of 26 wines from different regions, varieties and elaboration processes have been analyzed with an e-nose and tasted by a sensory panel. Successful results have been obtained in most cases for prediction and classification.

摘要

本工作旨在提出一种基于电子鼻(e-nose)和独立成分分析(ICA)作为降维技术,结合偏最小二乘法(PLS)预测感官描述符和人工神经网络(ANNs)进行分类的葡萄酒分类和预测的替代方法。共分析了来自不同地区、品种和酿造工艺的 26 种葡萄酒,并由感官小组品尝。在大多数情况下,预测和分类都取得了成功的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/277c/3436016/455d937c0f0d/sensors-12-08055f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验