Suppr超能文献

基于 MOS 传感器阵列和机器学习算法的仿生电子鼻用于葡萄酒特性检测。

Bionic Electronic Nose Based on MOS Sensors Array and Machine Learning Algorithms Used for Wine Properties Detection.

机构信息

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.

COFCO Huaxia Greatwall Wine Co., Ltd. No. 555, Changli 066600, China.

出版信息

Sensors (Basel). 2018 Dec 22;19(1):45. doi: 10.3390/s19010045.

Abstract

In this study, a portable electronic nose (E-nose) prototype is developed using metal oxide semiconductor (MOS) sensors to detect odors of different wines. Odor detection facilitates the distinction of wines with different properties, including areas of production, vintage years, fermentation processes, and varietals. Four popular machine learning algorithms-extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and backpropagation neural network (BPNN)-were used to build identification models for different classification tasks. Experimental results show that BPNN achieved the best performance, with accuracies of 94% and 92.5% in identifying production areas and varietals, respectively; and SVM achieved the best performance in identifying vintages and fermentation processes, with accuracies of 67.3% and 60.5%, respectively. Results demonstrate the effectiveness of the developed E-nose, which could be used to distinguish different wines based on their properties following selection of an optimal algorithm.

摘要

在这项研究中,开发了一种使用金属氧化物半导体(MOS)传感器的便携式电子鼻(E-nose)原型,用于检测不同葡萄酒的气味。气味检测有助于区分具有不同特性的葡萄酒,包括生产区域、年份、发酵过程和品种。四种流行的机器学习算法——极端梯度提升(XGBoost)、随机森林(RF)、支持向量机(SVM)和反向传播神经网络(BPNN)——被用于为不同的分类任务构建识别模型。实验结果表明,BPNN 在识别生产区域和品种方面表现最佳,准确率分别为 94%和 92.5%;而 SVM 在识别年份和发酵过程方面表现最佳,准确率分别为 67.3%和 60.5%。结果表明,所开发的 E-nose 是有效的,可根据所选最佳算法基于其特性来区分不同的葡萄酒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验