Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
PLoS Pathog. 2012 Sep;8(9):e1002891. doi: 10.1371/journal.ppat.1002891. Epub 2012 Sep 6.
Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.
阳离子抗菌肽 (CAMPs) 作为先天免疫系统抵御入侵微生物病原体的第一道防线。革兰氏阳性菌可以通过用 D-丙氨酸修饰其带负电荷的磷壁酸 (TAs) 来抵抗 CAMPs,但确切的抵抗机制尚不完全清楚。在这里,我们利用各种功能和生物物理方法研究了人类病原体 B 组链球菌 (GBS) 与一系列具有不同特性的 CAMPs 的相互作用。数据显示:(i) 脂磷壁酸 (LTAs) 的 D-丙氨酸化仅增强 GBS 对一小部分 CAMPs 的抗性,并且抗性与 CAMPs 的长度和电荷密度直接相关;(ii) LTAs 阴离子电荷减少导致的抗性并不是由于与细菌结合的肽量减少引起的;(iii) D-丙氨酸化很可能改变 LTAs 的构象,从而增加细胞壁密度,正如透射电子显微镜所看到的,并且减少 CAMPs 通过细胞壁的渗透。此外,原子力显微镜显示,野生型 GBS 菌株细胞壁的表面刚性增加了 20 多倍,而 dltA 突变体则增加了 20 多倍。我们提出,LTAs 的 D-丙氨酸化主要通过降低细胞壁的柔韧性和通透性来保护细菌免受线性 CAMPs 的侵害,而不是通过减少肽与细胞表面的静电相互作用。总之,我们的发现揭示了细胞壁对 CAMPs 的重要保护作用,并扩展了我们对细菌耐药机制的理解。