Suppr超能文献

利用响应面法优化短稳杆菌 SGJ 生产 L-多巴。

Optimization of L-DOPA production by Brevundimonas sp. SGJ using response surface methodology.

机构信息

Department of Microbiology, Shivaji University, Kolhapur 416004, India.

出版信息

Microb Biotechnol. 2012 Nov;5(6):731-7. doi: 10.1111/j.1751-7915.2012.00363.x. Epub 2012 Sep 13.

Abstract

L-DOPA (3,4-dihydroxyphenyl-L-alanine) is an extensively used drug for the treatment of Parkinson's disease. In the present study, optimization of nutritional parameters influencing L-DOPA production was attempted using the response surface methodology (RSM) from Brevundimonas sp. SGJ. A Plackett-Burman design was used for screening of critical components, while further optimization was carried out using the Box-Behnken design. The optimized levels of factors predicted by the model were pH 5.02, 1.549 g l(-1) tryptone, 4.207 g l(-1) L-tyrosine and 0.0369 g l(-1) CuSO(4) , which resulted in highest L-DOPA yield of 3.359 g l(-1). The optimization of medium using RSM resulted in a 8.355-fold increase in the yield of L-DOPA. The anova showed a significant R(2) value (0.9667), model F-value (29.068) and probability (0.001), with insignificant lack of fit. The highest tyrosinase activity observed was 2471 U mg(-1) at the 18th hour of the incubation period with dry cell weight of 0.711 g l(-1). L-DOPA production was confirmed by HPTLC, HPLC and GC-MS analysis. Thus, Brevundimonas sp. SGJ has the potential to be a new source for the production of L-DOPA.

摘要

L-DOPA(3,4-二羟基苯丙氨酸)是一种广泛用于治疗帕金森病的药物。本研究采用响应面法(RSM)对 Brevundimonas sp. SGJ 生产 L-DOPA 的营养参数进行了优化。采用 Plackett-Burman 设计筛选关键成分,然后采用 Box-Behnken 设计进行进一步优化。模型预测的最佳因素水平为 pH 5.02、1.549 g l(-1) 胰蛋白胨、4.207 g l(-1) L-酪氨酸和 0.0369 g l(-1) CuSO(4),最高 L-DOPA 得率为 3.359 g l(-1)。通过 RSM 对培养基进行优化,使 L-DOPA 的产率提高了 8.355 倍。方差分析显示,R(2)值(0.9667)、模型 F 值(29.068)和概率(0.001)均显著,无显著失拟。在细胞干重为 0.711 g l(-1)时,孵育 18 小时观察到的酪氨酸酶活性最高为 2471 U mg(-1)。通过 HPTLC、HPLC 和 GC-MS 分析证实了 L-DOPA 的生成。因此,Brevundimonas sp. SGJ 具有生产 L-DOPA 的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验