Suppr超能文献

基于结构的酿酒酵母醇脱氢酶 LlAdhA 工程改造提高异丁醛到异丁醇的转化率。

Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

J Biotechnol. 2012 Dec 15;164(2):188-95. doi: 10.1016/j.jbiotec.2012.08.008. Epub 2012 Sep 3.

Abstract

We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA(RE1) at 1.9Å and 2.5Å resolution, respectively. LlAdhA(RE1), which contains three amino acid mutations (Y50F, I212T, and L264V), was engineered to increase the microbial production of isobutanol (2-methylpropan-1-ol) from isobutyraldehyde (2-methylpropanal). Structural comparison of LlAdhA and LlAdhA(RE1) indicates that the enhanced activity on isobutyraldehyde stems from increases in the protein's active site size, hydrophobicity, and substrate access. Further structure-guided mutagenesis generated a quadruple mutant (Y50F/N110S/I212T/L264V), whose KM for isobutyraldehyde is ∼17-fold lower and catalytic efficiency (kcat/KM) is ∼160-fold higher than wild-type LlAdhA. Combining detailed structural information and directed evolution, we have achieved significant improvements in non-native alcohol dehydrogenase activity that will facilitate the production of next-generation fuels such as isobutanol from renewable resources.

摘要

我们分别以 1.9Å 和 2.5Å 的分辨率确定了乳酸乳球菌 NADH 依赖型醇脱氢酶 LlAdhA 及其实验室进化变体 LlAdhA(RE1)的 X 射线晶体结构。LlAdhA(RE1)包含三个氨基酸突变(Y50F、I212T 和 L264V),经过工程改造后可提高微生物从异丁醛(2-甲基丙醛)生产异丁醇(2-甲基-1-丙醇)的产量。LlAdhA 和 LlAdhA(RE1)的结构比较表明,其对异丁醛活性的增强源于增加了蛋白质的活性部位大小、疏水性和底物进入。进一步的结构指导突变产生了四重突变体(Y50F/N110S/I212T/L264V),其对异丁醛的 KM 约低 17 倍,催化效率(kcat/KM)比野生型 LlAdhA 高 160 倍。结合详细的结构信息和定向进化,我们在非天然醇脱氢酶活性方面取得了显著的提高,这将有助于从可再生资源生产下一代燃料,如异丁醇。

相似文献

1
Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol.
J Biotechnol. 2012 Dec 15;164(2):188-95. doi: 10.1016/j.jbiotec.2012.08.008. Epub 2012 Sep 3.
2
Corynebacterium glutamicum tailored for efficient isobutanol production.
Appl Environ Microbiol. 2011 May;77(10):3300-10. doi: 10.1128/AEM.02972-10. Epub 2011 Mar 25.
3
Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.
J Ind Microbiol Biotechnol. 2015 Nov;42(11):1473-9. doi: 10.1007/s10295-015-1656-z. Epub 2015 Sep 8.
5
Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes.
Appl Microbiol Biotechnol. 2010 Jan;85(3):651-7. doi: 10.1007/s00253-009-2085-6. Epub 2009 Jul 16.
8
Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity.
Microb Cell Fact. 2012 Jun 25;11:90. doi: 10.1186/1475-2859-11-90.
9
Detailed structure-function correlations of Bacillus subtilis acetolactate synthase.
Chembiochem. 2015 Jan 2;16(1):110-8. doi: 10.1002/cbic.201402541. Epub 2014 Nov 13.
10
Rational design of Meso-2,3-butanediol dehydrogenase by molecular dynamics simulation and experimental evaluations.
FEBS Lett. 2017 Oct;591(20):3402-3413. doi: 10.1002/1873-3468.12834. Epub 2017 Sep 17.

引用本文的文献

1
Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation.
Appl Microbiol Biotechnol. 2024 Dec 27;108(1):545. doi: 10.1007/s00253-024-13375-0.
3
Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production.
Microb Biotechnol. 2024 Mar;17(3):e14438. doi: 10.1111/1751-7915.14438.
4
Isobutanol production by combined and metabolic engineering.
Metab Eng Commun. 2022 Oct 23;15:e00210. doi: 10.1016/j.mec.2022.e00210. eCollection 2022 Dec.
5
Comparative functional genomics identifies an iron-limited bottleneck in a strain with a cytosolic-localized isobutanol pathway.
Synth Syst Biotechnol. 2022 Mar 18;7(2):738-749. doi: 10.1016/j.synbio.2022.02.007. eCollection 2022 Jun.
6
Modulating redox metabolism to improve isobutanol production in Shimwellia blattae.
Biotechnol Biofuels. 2021 Jan 6;14(1):8. doi: 10.1186/s13068-020-01862-1.
7
Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis.
ACS Nano. 2018 Feb 27;12(2):942-953. doi: 10.1021/acsnano.7b06049. Epub 2017 Nov 20.
8
Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural.
J Ind Microbiol Biotechnol. 2016 Jan;43(1):37-44. doi: 10.1007/s10295-015-1718-2. Epub 2015 Dec 11.
9
Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.
Protein Eng Des Sel. 2016 Jan;29(1):31-8. doi: 10.1093/protein/gzv057. Epub 2015 Oct 27.

本文引用的文献

1
High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal.
Appl Microbiol Biotechnol. 2011 Jun;90(5):1681-90. doi: 10.1007/s00253-011-3173-y. Epub 2011 Mar 10.
4
Corynebacterium glutamicum tailored for efficient isobutanol production.
Appl Environ Microbiol. 2011 May;77(10):3300-10. doi: 10.1128/AEM.02972-10. Epub 2011 Mar 25.
5
Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose.
Appl Environ Microbiol. 2011 Apr;77(8):2727-33. doi: 10.1128/AEM.02454-10. Epub 2011 Mar 4.
6
Use of the valine biosynthetic pathway to convert glucose into isobutanol.
J Ind Microbiol Biotechnol. 2011 Sep;38(9):1287-94. doi: 10.1007/s10295-010-0907-2. Epub 2010 Dec 15.
7
Engineering Corynebacterium glutamicum for isobutanol production.
Appl Microbiol Biotechnol. 2010 Jul;87(3):1045-55. doi: 10.1007/s00253-010-2522-6. Epub 2010 Apr 8.
8
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
9
XDS.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. doi: 10.1107/S0907444909047337. Epub 2010 Jan 22.
10
Stability effects of mutations and protein evolvability.
Curr Opin Struct Biol. 2009 Oct;19(5):596-604. doi: 10.1016/j.sbi.2009.08.003. Epub 2009 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验