Gambacorta Francesca V, Wagner Ellen R, Jacobson Tyler B, Tremaine Mary, Muehlbauer Laura K, McGee Mick A, Baerwald Justin J, Wrobel Russell L, Wolters John F, Place Mike, Dietrich Joshua J, Xie Dan, Serate Jose, Gajbhiye Shabda, Liu Lisa, Vang-Smith Maikayeng, Coon Joshua J, Zhang Yaoping, Gasch Audrey P, Amador-Noguez Daniel, Hittinger Chris Todd, Sato Trey K, Pfleger Brian F
DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
Synth Syst Biotechnol. 2022 Mar 18;7(2):738-749. doi: 10.1016/j.synbio.2022.02.007. eCollection 2022 Jun.
Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in . Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe-S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.
代谢工程策略已成功应用于提高新一代生物燃料异丁醇的产量。在此,我们探究其中两种策略,即途径重新定位和氧化还原辅因子平衡,如何影响异丁醇生产菌株的性能和生理状态。我们为酵母配备了异丁醇盒,其异丁醇途径要么定位于线粒体,要么定位于胞质,并且使用了氧化还原不平衡(依赖NADPH)或氧化还原平衡(依赖NADH)的酮醇酸还原异构酶。然后,我们进行了转录组学、蛋白质组学和代谢组学分析,以阐明工程菌株之间的分子差异。途径定位对异丁醇产量有很大影响,表达线粒体定位酶的菌株产生的异丁醇比表达胞质酶的菌株多3.8倍。辅因子平衡并未提高异丁醇滴度,相反,具有氧化还原不平衡途径的菌株产生的异丁醇比平衡途径的菌株多1.5倍,尽管总体途径通量较低。功能基因组分析表明,胞质途径菌株性能不佳部分是由于胞质铁硫簇短缺,而铁硫簇是二羟基酸脱水酶所需的辅因子。然后,我们证明通过用突变破坏铁稳态,从而提高细胞铁水平,这种辅因子限制可能会部分得到恢复。携带胞质定位异丁醇途径的缺失菌株产生的异丁醇滴度比具有线粒体定位途径的菌株高1.3倍,这表明两种定位都可以支持异丁醇的通量。