Suppr超能文献

事故发生的因素复杂性:使用提升回归树的实证研究

Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees.

机构信息

Department of Logistics and Shipping Management, Kainan University, Taiwan.

出版信息

Accid Anal Prev. 2013 Dec;61:107-18. doi: 10.1016/j.aap.2012.08.015. Epub 2012 Sep 11.

Abstract

Factor complexity is a characteristic of traffic crashes. This paper proposes a novel method, namely boosted regression trees (BRT), to investigate the complex and nonlinear relationships in high-variance traffic crash data. The Taiwanese 2004-2005 single-vehicle motorcycle crash data are used to demonstrate the utility of BRT. Traditional logistic regression and classification and regression tree (CART) models are also used to compare their estimation results and external validities. Both the in-sample cross-validation and out-of-sample validation results show that an increase in tree complexity provides improved, although declining, classification performance, indicating a limited factor complexity of single-vehicle motorcycle crashes. The effects of crucial variables including geographical, time, and sociodemographic factors explain some fatal crashes. Relatively unique fatal crashes are better approximated by interactive terms, especially combinations of behavioral factors. BRT models generally provide improved transferability than conventional logistic regression and CART models. This study also discusses the implications of the results for devising safety policies.

摘要

因素复杂性是交通事故的一个特征。本文提出了一种新的方法,即提升回归树(BRT),用于研究高方差交通事故数据中的复杂非线性关系。利用台湾 2004-2005 年的单人摩托车事故数据来说明 BRT 的实用性。还使用了传统的逻辑回归和分类回归树(CART)模型来比较它们的估计结果和外部有效性。样本内交叉验证和样本外验证结果均表明,随着树复杂度的增加,分类性能会提高,尽管有所下降,这表明单人摩托车事故的因素复杂性有限。包括地理、时间和社会人口因素在内的关键变量的影响解释了一些致命事故的原因。相对独特的致命事故可以通过交互项更好地近似,尤其是行为因素的组合。BRT 模型通常比传统的逻辑回归和 CART 模型提供更好的可转移性。本研究还讨论了这些结果对制定安全政策的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验