Suppr超能文献

一种自适应加权集成方法,用于高效计算自由能和首次穿越率。

An adaptive weighted ensemble procedure for efficient computation of free energies and first passage rates.

机构信息

Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.

出版信息

J Chem Phys. 2012 Sep 14;137(10):104101. doi: 10.1063/1.4748278.

Abstract

We introduce an adaptive weighted-ensemble procedure (aWEP) for efficient and accurate evaluation of first-passage rates between states for two-state systems. The basic idea that distinguishes aWEP from conventional weighted-ensemble (WE) methodology is the division of the configuration space into smaller regions and equilibration of the trajectories within each region upon adaptive partitioning of the regions themselves into small grids. The equilibrated conditional∕transition probabilities between each pair of regions lead to the determination of populations of the regions and the first-passage times between regions, which in turn are combined to evaluate the first passage times for the forward and backward transitions between the two states. The application of the procedure to a non-trivial coarse-grained model of a 70-residue calcium binding domain of calmodulin is shown to efficiently yield information on the equilibrium probabilities of the two states as well as their first passage times. Notably, the new procedure is significantly more efficient than the canonical implementation of the WE procedure, and this improvement becomes even more significant at low temperatures.

摘要

我们提出了一种自适应加权集合(aWEP)方法,用于高效、准确地评估两态系统中状态间的首次通过速率。aWEP 与传统加权集合(WE)方法的基本区别在于将配置空间划分为较小的区域,并在自适应分区后在每个区域内平衡轨迹。在每个区域对之间的平衡条件/转移概率导致区域的种群和区域之间的首次通过时间的确定,这反过来又组合起来以评估两个状态之间的正向和反向转移的首次通过时间。该程序在钙调蛋白的 70 残基钙结合域的非平凡粗粒化模型中的应用表明,它能够有效地提供关于两个状态的平衡概率及其首次通过时间的信息。值得注意的是,新程序比 WE 程序的标准实现效率更高,而在低温下,这种改进更为显著。

相似文献

引用本文的文献

3
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software.加权集成模拟:方法、应用及软件综述
Annu Rev Biophys. 2017 May 22;46:43-57. doi: 10.1146/annurev-biophys-070816-033834. Epub 2017 Mar 1.
4
Markov State Models of gene regulatory networks.基因调控网络的马尔可夫状态模型
BMC Syst Biol. 2017 Feb 6;11(1):14. doi: 10.1186/s12918-017-0394-4.

本文引用的文献

6
Coarse-grained force field: general folding theory.粗粒化力场:一般折叠理论。
Phys Chem Chem Phys. 2011 Oct 14;13(38):16890-901. doi: 10.1039/c1cp20752k. Epub 2011 Jun 3.
7
Markov state models based on milestoning.基于里程碑的马尔可夫状态模型。
J Chem Phys. 2011 May 28;134(20):204105. doi: 10.1063/1.3590108.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验