Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium.
Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, Belgium.
Eur J Nucl Med Mol Imaging. 2022 Sep;49(11):3772-3786. doi: 10.1007/s00259-022-05808-7. Epub 2022 May 6.
End-of-life studies have validated the binary visual reads of F-labeled amyloid PET tracers as an accurate tool for the presence or absence of increased neuritic amyloid plaque density. In this study, the performance of a support vector machine (SVM)-based classifier will be tested against pathological ground truths and its performance determined in cognitively healthy older adults.
We applied SVM with a linear kernel to an F-Flutemetamol end-of-life dataset to determine the regions with the highest feature weights in a data-driven manner and to compare between two different pathological ground truths: based on neuritic amyloid plaque density or on amyloid phases, respectively. We also trained and tested classifiers based on the 10% voxels with the highest amplitudes of feature weights for each of the two neuropathological ground truths. Next, we tested the classifiers' diagnostic performance in the asymptomatic Alzheimer's disease (AD) phase, a phase of interest for future drug development, in an independent dataset of cognitively intact older adults, the Flemish Prevent AD Cohort-KU Leuven (F-PACK). A regression analysis was conducted between the Centiloid (CL) value in a composite volume of interest (VOI), as index for amyloid load, and the distance to the hyperplane for each of the two classifiers, based on the two pathological ground truths. A receiver operating characteristic analysis was also performed to determine the CL threshold that optimally discriminates between neuritic amyloid plaque positivity versus negativity, or amyloid phase positivity versus negativity, within F-PACK.
The classifiers yielded adequate specificity and sensitivity within the end-of-life dataset (neuritic amyloid plaque density classifier: specificity of 90.2% and sensitivity of 83.7%; amyloid phase classifier: specificity of 98.4% and sensitivity of 84.0%). The regions with the highest feature weights corresponded to precuneus, caudate, anteromedial prefrontal, and also posterior inferior temporal and inferior parietal cortex. In the cognitively normal cohort, the correlation coefficient between CL and distance to the hyperplane was -0.66 for the classifier trained with neuritic amyloid plaque density, and -0.88 for the classifier trained with amyloid phases. This difference was significant. The optimal CL cut-off for discriminating positive versus negative scans was CL = 48-51 for the different classifiers (area under the curve (AUC) = 99.9%), except for the classifier trained with amyloid phases and based on the 10% voxels with highest feature weights. There the cut-off was CL = 26 (AUC = 99.5%), which closely matched the CL threshold for discriminating phases 0-2 from 3-5 based on the end-of-life dataset and the neuropathological ground truth.
Among a set of neuropathologically validated classifiers trained with end-of-life cases, transfer to a cognitively normal population works best for a classifier trained with amyloid phases and using only voxels with the highest amplitudes of feature weights.
生命末期研究已经验证了 F 标记淀粉样蛋白 PET 示踪剂的二元视觉读取作为一种准确的工具,用于确定是否存在神经原纤维缠结淀粉样斑块密度增加。在这项研究中,将测试基于支持向量机(SVM)的分类器的性能,以对抗病理的ground truths,并确定其在认知健康的老年人中的性能。
我们将线性核 SVM 应用于 F-Flutemetamol 生命末期数据集,以确定数据驱动方式中具有最高特征权重的区域,并分别比较两种不同的病理ground truths:基于神经原纤维缠结淀粉样斑块密度或淀粉样相。我们还基于两种神经病理学 ground truths 中每个的最高特征权重的 10%体素,训练和测试了分类器。接下来,我们在一个独立的认知正常老年人的数据集,即 Flemish Prevent AD Cohort-KU Leuven (F-PACK) 中,测试了无症状阿尔茨海默病(AD)阶段的分类器的诊断性能,这是未来药物开发的一个感兴趣的阶段。我们进行了回归分析,比较了两种分类器基于两个病理 ground truths 的每一个的复合感兴趣容积(VOI)中的 Centiloid(CL)值与超平面之间的距离。还进行了接收器操作特征分析,以确定 CL 阈值,该阈值可在 F-PACK 内最佳区分神经原纤维缠结淀粉样斑块阳性与阴性,或淀粉样相阳性与阴性。
分类器在生命末期数据集内表现出足够的特异性和敏感性(神经原纤维缠结淀粉样斑块密度分类器:特异性为 90.2%,敏感性为 83.7%;淀粉样相分类器:特异性为 98.4%,敏感性为 84.0%)。具有最高特征权重的区域与顶叶后扣带回、尾状核、前内侧前额叶以及后下颞叶和下顶叶皮质相对应。在认知正常队列中,基于神经原纤维缠结淀粉样斑块密度训练的分类器的 CL 与到超平面的距离之间的相关系数为-0.66,基于淀粉样相训练的分类器为-0.88。这一差异具有统计学意义。用于区分阳性与阴性扫描的最佳 CL 截止值为不同分类器的 CL=48-51(曲线下面积(AUC)=99.9%),除了基于淀粉样相训练且基于最高特征权重的 10%体素的分类器。该分类器的截止值为 CL=26(AUC=99.5%),这与基于生命末期数据集和神经病理学 ground truths 来区分 0-2 相与 3-5 相的 CL 阈值非常匹配。
在一组基于神经病理学验证的分类器中,针对使用仅具有最高特征权重的体素训练的基于淀粉样相的分类器,从生命末期病例转移到认知正常人群的效果最佳。