State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China.
Nano Lett. 2012 Oct 10;12(10):5436-42. doi: 10.1021/nl303323t. Epub 2012 Sep 18.
Self-catalyzed growth of GaAs nanowires are widely ascribed to the vapor-liquid-solid (VLS) mechanism due to the presence of Ga particles at the nanowire tips. Here we report synthesis of self-catalyzed GaAs nanowires by molecular-beam epitaxy covering a large growth parameter space. By carefully controlling the Ga flux and its ratio with the As flux, GaAs nanowires without Ga particles and exhibiting a flat growth front are produced. Using scanning electron microscopy and high-resolution transmission electron microscopy, we compare the growth rate and structure, especially near the growth front, of the nanowires with and without Ga droplets. We find that regardless of whether Ga droplets are present on top, the nanowires have a short wurtzite section following the zinc-blende bulk structure. The nanowires without Ga droplets are terminated by a thin zinc-blende cap, while the nanowires with Ga droplets do not have such a cap. The bulk zinc-blende phase is attributed to the Ga droplet wetting the sidewall during growth, pinning the triple phase line on the sidewall. The zinc-blend/wurtzite/(zinc-blende) phase transitions at the end of growth are fully consistent with the triple phase line shifting up to the growth front due to the progressive consumption of the Ga in the droplet by crystallization with As. The results imply an identical VLS growth mechanism for both types of GaAs NWs, and their intricate structures provide detailed comparison with and specific experimental verification of the recently proposed growth mechanism for self-catalyzed III-V semiconductor nanowires ( Phy. Rev. Lett. 2011 , 106 , 125505 ). Using this mechanism as a guideline, we successfully demonstrated controllable fabrication of two distinct types of axial superlattice GaAs NWs consisting of zinc-blende/defect-section and wurtzite/defect-section units.
自催化 GaAs 纳米线的生长通常归因于 VLS 机制,因为在纳米线尖端存在 Ga 颗粒。在这里,我们通过分子束外延(MBE)在较大的生长参数空间内合成了自催化 GaAs 纳米线,通过仔细控制 Ga 通量及其与 As 通量的比率,可以制备出没有 Ga 颗粒且具有平坦生长前沿的 GaAs 纳米线。使用扫描电子显微镜和高分辨率透射电子显微镜,我们比较了具有和不具有 Ga 液滴的纳米线的生长速率和结构,特别是在生长前沿附近。我们发现,无论顶部是否存在 Ga 液滴,纳米线在紧随锌矿块状结构之后都具有短的纤锌矿段。没有 Ga 液滴的纳米线由一个薄的锌矿帽端接,而具有 Ga 液滴的纳米线则没有这样的帽。无 Ga 液滴的纳米线的块状锌矿相归因于 Ga 液滴在生长过程中润湿侧壁,将三相线固定在侧壁上。由于 Ga 逐渐消耗于与 As 的结晶过程,液滴中的 Ga 在生长过程中向生长前沿迁移,导致生长结束时的锌矿/纤锌矿/(锌矿)相转变。结果表明,这两种类型的 GaAsNWs 具有相同的 VLS 生长机制,它们复杂的结构为自催化 III-V 半导体纳米线的最近提出的生长机制提供了详细的比较和具体的实验验证(Phy.Rev.Lett.2011,106,125505)。使用该机制作为指导,我们成功地演示了两种不同类型的轴向超晶格 GaAsNWs 的可控制备,包括锌矿/缺陷段和纤锌矿/缺陷段单元。