Suppr超能文献

铁锰蛋白的体外和体内金属化和非金属化:以 I 类核糖核苷酸还原酶为例。

Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.

出版信息

Metallomics. 2012 Oct;4(10):1020-36. doi: 10.1039/c2mt20142a. Epub 2012 Sep 18.

Abstract

How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, "discrimination" between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.

摘要

细胞如何确保给定蛋白质的正确金属化,以及金属结合的“混杂性”是否已经进化,这些在很大程度上仍是尚未解答的问题。在一个经典案例中,铁锰依赖的超氧化物歧化酶(SOD)利用高度相似的蛋白质支架和几乎相同的活性位点来催化超氧化物的歧化反应。然而,这些酶中的大多数仅对一种金属具有活性,尽管这两种金属都可以在体外和体内结合。二价铁(Fe(II))和二价锰(Mn(II))与大多数蛋白质结合较弱,且具有相似的配位偏好。它们不同的氧化还原特性表明,它们在生物系统中不太可能相互替换,除非它们在路易斯酸催化作用中发挥作用,但最近的研究表明情况并非总是如此。本综述总结了在相似或相同的蛋白质框架中替代铁和锰的多样性方式。作为模型,我们讨论了(1)在正常生长条件下被认为使用 Fe(II)作为路易斯酸的酶,例如差向异构酶,但在氧化应激下会切换到 Mn(II);(2)外二醇双加氧酶,已发现其使用 Fe(II)和 Mn(II),其在催化中的氧化还原作用仍有待阐明;(3)SOD,其利用氧化还原化学且通常具有金属特异性;以及(4)I 类核糖核苷酸还原酶(RNR),其已经进化出独特的生物合成途径来控制金属化。主要焦点是 Ib 类 RNR,它可以使用其β2 亚基中的酪氨酸残基上的二价铁或最近表征的二锰辅助因子来催化稳定自由基的形成。讨论了可以在铁和锰辅助因子之间切换的酶的生理作用,以及许多研究小组在铁和锰稳态以及生物体用于控制蛋白质金属化的发散和收敛策略方面获得的见解。我们提出,在讨论的许多系统中,“区分”金属不是由蛋白质本身完成的,而是由蛋白质表达的环境决定的。

相似文献

引用本文的文献

5
Iron: Life's primeval transition metal.铁:生命最初的过渡金属。
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2318692121. doi: 10.1073/pnas.2318692121. Epub 2024 Sep 9.
6
Microbes vary strategically in their metalation of mononuclear enzymes.微生物在单核酶的金属化作用上具有策略性变化。
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2401738121. doi: 10.1073/pnas.2401738121. Epub 2024 May 14.
9
Structure of a ribonucleotide reductase R2 protein radical.核苷酸还原酶 R2 蛋白自由基的结构。
Science. 2023 Oct 6;382(6666):109-113. doi: 10.1126/science.adh8160. Epub 2023 Oct 5.
10
Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor.锰铁辅因子促进的脂肪族 C-H 键的酶促羟化。
J Am Chem Soc. 2023 Aug 2;145(30):16526-16537. doi: 10.1021/jacs.3c03419. Epub 2023 Jul 20.

本文引用的文献

3
Emerging paradigms for complex iron-sulfur cofactor assembly and insertion.新兴的复杂铁硫辅因子组装和插入范式。
Annu Rev Biochem. 2012;81:429-50. doi: 10.1146/annurev-biochem-052610-094911. Epub 2012 Apr 5.
6
Mononuclear iron enzymes are primary targets of hydrogen peroxide stress.单核铁酶是过氧化氢应激的主要靶标。
J Biol Chem. 2012 May 4;287(19):15544-56. doi: 10.1074/jbc.M111.330365. Epub 2012 Mar 12.
9
Battles with iron: manganese in oxidative stress protection.与铁的战斗:锰在氧化应激保护中的作用。
J Biol Chem. 2012 Apr 20;287(17):13541-8. doi: 10.1074/jbc.R111.312181. Epub 2012 Jan 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验